The efforts of the pioneers who designed stimuli-sensitive polymers are compensated by several emerging applications inspired by this new technology. The specificity of these polymers lies in the conformation and / or solvation changes of macromolecular chains under the variation of an external stimulus such as pH, temperature, light, magnetic or electric waves. In this research project, a thin film of stimuli-sensitive polymer that acts as a transducer was deposited on a plasmonic layer to produce a sensor chip designed to detect ferric ions. To do this, microgels composed of a dual stimuli sensitive polymer called poly (N-isopropylacrylamide-co-acrylic acid) (PNIPAm-co-AAc) were synthesized with a thermo initiator: ammonium persulfate (APS), a monomer responsible for thermosensitivity: N-isopropylacrylamide (NIPAm), a comonomer responsible for pH sensitivity: AAc and a crosslinking agent: N,N'-methylenebisacrylamide (BIS). First, several studies on the thermo and pH-sensitivity of microgels are carried out. From these studies we obtain the temperature of the volume phase transition (VPTT) of microgels, which is between 25 to 35 °C. The reproducibility of the synthesis is conclusive because the VPTT and the size of the microgels in each synthesis remain approximately the same. Then, the microgels are functionalized with dopamine which has catechol groups known to chelate the ferric ions. Although the VPTT of the functionalized microgels is shifted towards higher temperatures and their degree of freedom to collapse decreases, they remain stimuli sensitive. In a second step, the functionalized microgels are deposited on a gold-coated prism using the Langmuir-Blodgett technique. In order to optimize the surface assembly, the surface pressure and the number of dipping cycles were varied. The deposited microgels are characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Once assembled, surface plasmon resonance spectroscopy (SPR) is employed to study the sensitivity of the microgels to Fe³⁺. The shift in the surface plasmon resonance wavelength (Δλ[subscript SPR]) in the presence of Fe³⁺ will be highlighted to demonstrate this sensitivity. / Les polymères sensibles aux stimuli diffèrent des polymères conventionnels. La spécificité de ces polymères réside dans le changement de la conformation et/ou de la solvatation des chaînes macromoléculaires sous l'action de la variation d'un stimulus externe comme le pH, la température, la lumière, les ondes magnétiques ou électriques. Dans ce projet un film mince de polymère stimuli-sensible a été déposé sur une couche plasmonique pour fabriquer un capteur qui sert à détecter les ions ferriques. Pour ce faire, des microgels composés de réseaux polymériques du poly(N-isopropylacrylamide-co-acide acrylique) (PNIPAm-co-AAc) ont été synthétisés à partir d'un thermo-initiateur, le persulfate d'ammonium (APS), d'un monomère responsable de la thermosensibilité , le N-isopropylacrylamide (NIPAm), d'un co-monomère d'acide acrylique (AAc) et d'un agent de réticulation, le N,N'-méthylènebisacrylamide (BIS). Dans un premier temps, plusieurs caractérisations seront effectuées en fonction de la variation de la température et du pH pour mettre en évidence la thermo- et pH-sensibilité des microgels. À partir de ces études s'en découle la température de transition de volume de phase (VPTT) des microgels qui se situe entre 25 et 35 °C. La reproductibilité de la synthèse est très satisfaisante car la VPTT et la taille des microgels issus des synthèses répétées restent relativement constantes. Par la suite, les microgels ont été fonctionnalisés avec la dopamine qui comporte des groupements catéchol, connus pour chélater les ions Fe³⁺. Suite à cette fonctionnalisation, la VPTT des microgels est déplacée vers les plus hautes températures et la transition devient plus progressive. Dans un deuxième temps, les microgels fonctionnalisés sont déposés à l'aide de la technique Langmuir-Blodgett sur un prisme de Dove revêtu d'une couche d'or afin d'étudier la sensibilité des microgels face au Fe³⁺ par spectroscopie de résonnance de plasmon de surface (SPR). Le déplacement de la longueur d'onde de la résonance de plasmon de surface (Δλ[indice SPR]) est mise en exergue dans ce travail pour démontrer cette sensibilité. Afin d'optimiser cet assemblage en surface, la pression de surface et le nombre de trempages ont été variés. L'assemblage a aussi été caractérisé par microscopie électronique à balayage (SEM) et microscopie à force atomique (AFM).
Identifer | oai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/71623 |
Date | 10 February 2024 |
Creators | Rarivoarison, Soatoavina Kansas |
Contributors | Boudreau, Denis, Ritcey, Anna Marie |
Source Sets | Université Laval |
Language | French |
Detected Language | French |
Type | mémoire de maîtrise, COAR1_1::Texte::Thèse::Mémoire de maîtrise |
Format | 1 ressource en ligne (xxiii, 128 pages), application/pdf |
Rights | http://purl.org/coar/access_right/c_abf2 |
Page generated in 0.0021 seconds