Return to search

A Numerical Simulation of Thermal and Electrical Properties of Nano-fiber Network Polymer Composites Using Percolation Theory and Monte Carlo Method

Polymer matrix composites reinforced by metal fibers are observed to present an
onset of the insulator-to-conductor transition through previous experimental studies.
Analytical studies revealed that the percolation threshold occurs when fiber volume
fraction reaches the critical value. The numerical study based on Monte Carlo
simulations are performed to investigate such a relation. In this work, the conductive
fillers are modeled as a three dimensional (3D) network of identical units randomly
distributed in the polymer matrix. For the simplest case, straight fibers are used in the
simulation. The effects of the aspect ratio and fiber length on the critical volume
fraction are also studied. Linearization is made to the logarithm of simulation results.
Next, in order to study the effects of emulsion particles and the emulsion particle sizes
on the percolation behavior, cubic particles are aligned in the sample model. The gap
width to particle size ratio is fixed at 1/10. The calculated critical volume fraction is used
in the power-law function to predict the electrical conductivity of the polymer composites. Due to the insensitivity of the thermal conductivity to the percolation
threshold, a combination of two empirical equations is used to predict the range of
overall thermal conductivity.

Identiferoai:union.ndltd.org:tamu.edu/oai:repository.tamu.edu:1969.1/ETD-TAMU-2008-12-240
Date14 January 2010
CreatorsGu, Heng
ContributorsYu, Choongho
Source SetsTexas A and M University
Languageen_US
Detected LanguageEnglish
TypeBook, Thesis, Electronic Thesis
Formatapplication/pdf

Page generated in 0.0234 seconds