Return to search

DEVELOPMENT OF CONJUGATED COPOLYMERS FOR CARBON NANOTUBE-BASED SOLAR CELLS

The investigation carried out in this project allowed for the development of eleven regioregular π-conjugated alternating copolymers and their implementation in organic solar cells. The eleven synthesized polymers, poly[(2,7-(9-(heptadecan-9-yl)-9H-carbazole))-alt-(4,7-dithien-2-yl-2,1,3-benzothiadiazole)] (CB), poly[(2,7-(9,9-dioctyl-9H-fluorene-2,7-diyl))-alt-(1,6-pyrene)] (LP), poly[(2,7-(9-(heptadecan-9-yl)-9H-carbazole))-alt-(5,5’’’-(3,3’’’-dihexyl-2,2':5',2'':5'',2'''-quarterthiophene))] (CT), poly[(2,7-(9-(heptadecan-9-yl)-9H-carbazole))-alt-(2,7-9H-fluoren-9-one)] (CF), poly[(2,7-(9-(heptadecan-9-yl)-9H-carbazole))-alt-(1,6-pyrene)] (CP), poly[(2,7-(9,9-dioctyl-9H-fluorene-2,7-diyl))-alt-(4,7-dithien-2-yl-2,1,3-benzothiadiazole)] (LB), poly[(2,7-(9,9-dioctyl-9H-fluorene-2,7-diyl))-alt-(2,7-9H-fluoren-9-one)] (LF), poly[(5,5’’’-(3,3’’’-dihexyl-2,2':5',2'':5'',2'''-quarterthiophene))-alt-(2,7-9H- fluoren-9-one)] (TF), poly[(2,7-(9,9-dioctyl-9H-fluorene-2,7-diyl))-alt-(4,4'-dioctyl-2,2'-bithiophene)] (oTLT), poly[(2,7-(9-(heptadecan-9-yl)-9H-carbazole))-alt-(4,4'-dioctyl-2,2'-bithiophene)] (oTCT), poly[(2,7-(9-(heptadecan-9-yl)-9H-carbazole))-alt-(4,4'-dihexyl-2,2'-bithiophene)] (TCT), were investigated using theoretical methods that included semi-empirical geometry optimizations, density functional theory (DFT) energy calculations, and time-dependent density functional theory (TD-DFT) optical absorption predictions. The absorption predictions gave credence to our experimental results in which the absorption of the longer polymer chains underwent a redshift from the monomer absorption.
With several of the prepared polymers, bulk-heterojunction photovoltaic cells were fabricated and their photovoltaic activity was investigated. Several of the fabricated cells exhibited photovoltaic efficiencies including polymer/PCBM composites with an aluminum back electrode (CF, CT, P3HT, and MEH-PPV), and also inverted cells with a silver back electrode (CT, P3HT, and MEH-PPV). Several polymers (CF, CT, TCT, LP, oTCT, oTLT, P3HT, and MEH-PPV) were used to solubilize single-walled carbon nanotubes (SWNTs). The solubility of the nanotubes occurred by the polymers’ ability to wrap the tubes, disrupt the bundles (ropes of tubes), and allow for the creation of a homogeneous mixture. Polymer:PCBM:SWNT mixtures were prepared and utilized as the active layer in BHJ solar cells. Some of the inverted cells (with a silver back electrode) that incorporated the nanotube composites (CT, oTCT, oTLT, P3HT, and MEH-PPV) displayed photovoltaic activity. These preliminary results illuminate the photovoltaic behavior of the polymer and provide evidence for their future use in polymer solar cells. / Thesis (Master, Chemistry) -- Queen's University, 2011-02-13 22:09:00.464

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OKQ.1974/6315
Date14 February 2011
CreatorsKRAFT, THOMAS M
ContributorsQueen's University (Kingston, Ont.). Theses (Queen's University (Kingston, Ont.))
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish, English
Detected LanguageEnglish
TypeThesis
RightsThis publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner.
RelationCanadian theses

Page generated in 0.0023 seconds