Metallic robotic arms, or manipulators, currently dominate automated industrial operations, but
due to their intrinsic weight, have limited usefulness for large-scale applications in terms of
precision, speed, and repeatability. This thesis focuses on exploring the feasibility of using
polymeric composite materials for the construction of long-reach robotic arms. Different
manipulator layouts were investigated and an ideal design was selected for a robotic arm that has
a 5 [m] reach, 50 [kg] payload, and is intended to operate on large objects with complex
curvature.
The cross-sectional geometry of the links of the arm were analyzed for optimal stiffness- and
strength-to-weight ratios that are capable of preserving high precision and repeatability under
time-dependent external excitations. The results lead to a novel multi-segment link design and
method of production.
A proof-of-concept prototype of a two degrees-of-freedom (2-DOF) robotic arm with a reach of
1.75 [m] was developed. Both static and repeatability testing were performed for verification.
The results indicated that the prototype robot main-arm constructed of carbon fiber-epoxy
composite material provides good stiffness-to-weight and strength-to-weight ratios. Finite
element analysis (FEA) was performed on a 3-D computer model of the arm. Successful
verification led to the use of the 3-D model to define the dimensions of an industrial-sized robotic
arm. The results obtained indicate high stiffness and minimal deflection while achieving a
significant weight reduction when compared to commercial arms of the same size and capability.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OOSHDU.10155/27 |
Date | 01 August 2009 |
Creators | Willis, Darrin |
Contributors | Nokleby, Scott, Pop-Iliev, Remon |
Publisher | UOIT |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English |
Detected Language | English |
Type | Thesis |
Page generated in 0.0017 seconds