Denna uppsats behandlar polynomapproximation i det komplexa talplanet.Några olika kända satser inom ämnet presenteras. Dessa satser redogör förunder vilka förutsättningar en kontinuerlig funktion kan approximeras mednågot polynom, beroende på funktionens definitionsmängd. Som nya resultatvisas att en godtycklig kontinuerlig funktion kan approximeras med någotpolynom som ej antar ett uppräkneligt antal godtyckligt valda värden, dådefinitionsmängden är en kompakt mängd utan inre punkter med sammanhängandekomplement.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:oru-74790 |
Date | January 2019 |
Creators | Linnea, Rousu |
Publisher | Örebro universitet, Institutionen för naturvetenskap och teknik |
Source Sets | DiVA Archive at Upsalla University |
Language | Swedish |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0058 seconds