Das Polysaccharid-Glykogen ist aus vielen Bakterien wie auch Eukaryoten bekannt. Es enthält ausschließlich über α1-4 Bindungen verknüpfte Glucoseeinheiten, die über α1-6-Bindungen verzweigt sind. Generell ist es als ein Speichermolekül anzusehen, das sowohl Kohlenstoff- als auch Energiequelle unter Stressbedingungen darstellt. Es ermöglicht die Aufrechterhaltung der Integrität der Zelle und die Erhaltung der notwendigen Stoffwechselvorgänge und führt zum Schutz einiger Zellbestandteile. In Bakterien ist die Regulation der Glykogen-Biosynthese durch die Kontrolle der Expression der Gene glg möglich. Der erste Schritt der Synthese ist die Bildung von ADP-Glucose aus Glucose-1-Phosphat durch ADP-Glucose-Pyrophosphorylase (ADP-Glc-PPase; ATP: α-d-glucose-1-Phosphat adenylyltransferase, EC 2.7.7.27), kodiert vom Gen glgC, gefolgt von den Reaktionen der Glykogen-Synthase (EC 2.4.1.21) und des Verzweigungsenzyms (EC 2.4.1.18), von dem die Genen glgA und glgB Genen kodiert sind. Der entscheidende Regulierungsschritt der Glykogen-Biosynthese in prokaryotischen Organismen, ist die durch ADP-Glc-PPase katalysierte Reaktion, die zur Bildung von ADP-Glukose und Pyrophosphat aus ATP und D-Glucose-1-Phosphat führt. Eine vergleichende Analyse des Glykogen-Biosynthese-Genclusters in Gram-negativen und Gram-positiven Bakterien zeigte, dass einige Gram-positive Spezies aus der Gattung Bacillus und Clostridium und den Milchsäurebakterien zwei Gene (glgC und glgD) besitzen. Sie kodieren für Proteine, die der ADP-Glc PPase ähnlich sind. Es wurde dokumentiert, dass GlgC und GlgD die Untereinheiten eines α2β2-Typ heterotetrameren Struktur bilden. Allerdings ist die Rolle von glgD bei Gram-positiven Bakterien noch unklar. Nur eine regulatorische Rolle des glgD in Bacillus stearothermophilus, ohne erkennbare enzymatische Aktivität des Protein-Produkts von GlgD ist bisher bekannt. In Bacillus subtilis und Streptomyces coelicolor hängt die Glykogen-Synthese mit der Sporulation und der Versorgung mit notwendigen Ressourcen zur Differenzierung zusammen. Die enzymatischen Aktivitäten der Glg Proteine, vor allem die Funktion von GlgD, welches Ähnlichkeiten in der Aminosäurensequenz mit GlgC zeigt, sind nicht charakterisiert. Demzufolge war der Schwerpunkt dieser Arbeit auf die Untersuchung der Funktion des glgC-homologen glgD Gens in einigen Michsäurebakterien (lactic acid bacteria, LAB) gerichtet. LAB sind eine Gruppe von fakultativ anaeroben, nicht pathogenen, nicht sporenbildenden grampositiven Bakterien mit wichtigen Funktionen für die menschliche Gesundheit und die Lebensmittelindustrie. Die vorliegende Arbeit ist auf die detaillierte funktionelle Analyse der beiden Gene glgC und glgD konzentriert, welche in den glgCDAP-B bzw. glgBCDAP Operons von Lactococcus lactis subsp. cremoris MG1363 und Lactobacillus plantarum WCFS1 liegen. Insbesondere war die Untersuchung der Funktion des glgC-homologen glgD Gens in LAB von Interesse für das Verständnis der Funktion des Speicher-Polysaccharids in dieser Organismengruppe. Mehr Informationen über die Funktion von glgD könnten dazu beitragen, den Mechanismus der Synthese und / oder Regulierung von Glykogen in dieser Bakteriengruppe zu verstehen und möglicherweise intrazelluläre Polysaccharidbildung (IPS) mit probiotischen Eigenschaften bestimmter Arten von LAB zu verknüpfen. Versuche zur funktionellen Charakterisierung dieser Gene schlossen derer Expression in verschiedenen E. coli Stämmen ein, dies gelang für alle Zielproteine in Form von unlöslichen Inclusion-bodies. Es wurden verschiedene Versuche unternommen, um die Bildung von Inclusion-bodies zu verhindern und eine größere Menge an löslichem Protein zu erhalten. Verschiedene Ansätze, wie Expression bei niedrigen Temperaturen, Wachstum unter Stress und Co-Expression mit verschiedenen Chaperonen sowie die Rückfaltung des Proteins aus Inclusion-bodies, waren nicht erfolgreich. Es war jedoch möglich, mittels einer Fusionsexpressionsuntersuchung der Gene glgC und glgD von Lb. plantarum WCFS1zu zeigen, dass es unter speziellen Wachstumsbedingungen eine Zunahme der Löslichkeit der Proteinfraktion um bis zu 50% im Vergleich zu den Standard-Zustand gab. Experimentell wurde nachgewiesen, dass die Proteine GlgC und GlgD stark miteinander interagieren. Beide Proteine scheinen Untereinheiten zu sein, die das voll aktive Enzym bilden. Das führt zum Modell bei dem α-und β-Untereinheiten eine heterotetrameren Struktur bilden, wie es schon zuvor im Gram-positiven Bakterium Bacillus stearothermophilus beschrieben worden ist. In dieser Studie konnte erstmals gezeigt werden, dass die GlgC und GlgD Proteine von Milchsäurebakterien miteinander interagieren. Außerdem wurde in dieser Studie auch eine niedrige, ATP-abhängige enzymatische Aktivität der GlgD Protein in Abwesenheit von GlgC beobachtet. Die Fähigkeit des GlgD Proteins ADP-Glc zu produzieren deutet auf eine mögliche auch katalytische und regulatorische Funktion des Proteins hin. Die ADP-Glc-PPase Aktivität wird offenbar in bestimmten LAB durch einen Protein-Komplex gebildet, der durch die Gene glgC und glgD kodiert wird. Diese Gene sind in folgenden LAB-Stämmen konserviert: Lactococcus lactis subsp. cremoris MG1363 und Lactobacillus plantarum WCFS1. Darüber hinaus weisen erfolglose Versuche zur von glgD getrennten Expression von glgC auf die Wichtigkeit von GlgD für die stabile und lösliche Expression von GlgC hin, der genaue Grund dafür ist unbekannt. Weitere Untersuchungen sind notwendig, um die vielen regulatorischen Aspekte des Glykogen Metabolismus in LAB sowohl auf Transkriptions- wie auch auf Translationsebene zu verstehen. Es könnte auch möglich sein, dass diese beiden Gene essentiell für das Wachstum dieser Arten sind, da sie trotz verschiedener Versuche mit verschiedenen Vektoren nicht deletiert werden konnten. Eine weitere wichtige Beobachtung dieser Studie wies darauf hin, dass UTP als Substrat für das gereinigte GlgD ist, ein Anzeichen für eine alternative Reaktion zur Produktion von UDP-Glucose. Dies könnte ein Hinweis für einen alternativen Weg der Glykogen-Biosynthese sein. Die Beobachtung, dass die glgC- und glgD-Gene offenbar essentiell sind und dass es möglicherweise einen alternativen Weg für die Glykogen-Biosynthese gibt, deutet darauf hin, dass Glykogen eine wichtige Rolle für das Überleben dieser LAB-Stämme spielt.
Identifer | oai:union.ndltd.org:uni-goettingen.de/oai:ediss.uni-goettingen.de:11858/00-1735-0000-0006-AE30-5 |
Date | 20 September 2011 |
Creators | Kassem, Milad |
Contributors | Liebl, Wolfgang Prof. Dr. |
Source Sets | Georg-August-Universität Göttingen |
Language | English |
Detected Language | German |
Type | doctoralThesis |
Format | application/pdf |
Rights | http://creativecommons.org/licenses/by-nc-nd/3.0/ |
Page generated in 0.0033 seconds