Return to search

Designing Functionality into Step-Growth Polymers from Liquid Crystallinity to Additive Manufacturing

Step-growth polymerization facilitates the synthesis of a wide range of industrially applicable polymers, such as polyesters and polysulfones. The choice of backbone and end group structure within these polymers drastically impacts the final material properties and processability emphasizing the necessity for thorough understanding of structure-property relationships. Seemingly simple changes, such as exchanging a monomer for its regioisomer, affects the polymers fundamental packing structure triggering a domino effect ultimately influencing the morphological, thermal, mechanical and barrier properties. In conjunction, end groups provide a means by which tunable mechanical properties and application into unique processing methods can be achieved.

Synthesizing polyesters with bibenzoate based monomers generates a large range of morphologies. Linear, 4,4' bibenzoate (4,4'BB), is widely considered a mesogenic monomer due to its ability to impart a liquid crystalline (LC) morphology on semi-aromatic polyesters with linear aliphatic spacers. In this body of work, semi-aromatic polyesters using one of 4,4'BB's regioisomers, either 3,4'BB or 3,3'BB, largely resulted in amorphous or semi-crystalline polymers depending on the selection of aliphatic diol. Incorporation of the meta isomer (3,4'BB) into traditionally LC polymers, such as poly(diethylene glycol 4,4'-bibenzoate) and poly(butylene 4,4'-bibenzoate), through copolymerization afforded two polymer series with tunable LC properties. The 3,4'BB exhibited selective disruption of crystalline domains over the LC phase generating a number of polymers with LC glass morphologies.

The application of 3,4'BB to a fully-aromatic polyester enabled the synthesis of a novel melt-processable homopolyester with high thermal stability, poly(p-phenylene 3,4' bibenzoate). This structure afforded a nematic LC morphology which revealed beneficial shear-thinning properties similar to industrial standards. The unique LC morphology of this homopolyester inspired further characterization of the range of achievable properties using the basic structure, poly(phenylene bibenzoate), with all the possible regioisomers. This study afforded six polymers systematically varied in chain linearity from a completely meta to a completely para backbone configuration. A range of morphologies were achieved from high Tg amorphous polymers for the meta configurations to semi-crystalline or LC in the polymers with greater linearity.

End group functionalization generates influence on polymer properties while limiting the impact on beneficial properties achieved through the backbone structure and packing. Post-polymerization reactions or the addition of a monofunctional endcapper to the polymerization both achieve end group control. In this dissertation, the addition of a monofunctional diester with a sulfonate moiety to a semi-aromatic LC polyester synthesis resulted in a telechelic ionomer. The non-covalent interaction of the ionic groups will hopefully improve the compression and transverse mechanical properties of the LCP. In contrast, post-polymerization functionalization incorporated acrylate groups onto the ends of a basic polysulfones. These reactive groups provided a handle for photo-curing which enabled the 3D printing of the polysulfones using vat photopolymerization. / Doctor of Philosophy / The research within this dissertation encompasses the design of new plastics for consumer and high-performance applications. Since the emergence of synthetic plastics in the 1920’s, these materials have become a necessity in our everyday life with a range of applications in food packaging, microelectronics, architecture, medical devices, automotive, and aerospace. Benefits over metals and glass primarily result from their light weight and wide range of mechanical properties which allow a range of material properties from soft and flexible plastic grocery bags to tough car parts.

Different classes of plastics (polymers) are based primarily on the chemicals used to produce the materials, for example polyesters and polysulfones. The chemical structure of these core materials drastically impacts the final properties of the polymers, which in turn influences their application space. This work focused on how subtle changes to these starting chemical structures allows us to tune the final polymer properties.

Within the class of polyesters, a focus was placed on materials known as liquid crystalline (LC) polyesters. A liquid crystalline polymer can achieve a physical state between a solid and a liquid which imparts many beneficial properties on the material processing. Liquid-crystal television displays utilized these properties to provide drastically thinner TV’s with higher resolution. Alternatively, LC polyesters find applications traditionally as high-performance fibers, insulators in microelectronics, and stainless-steel replacements in medical applications. Studying the role of chemical structure on the properties of LC polyester enabled the design of materials which improve upon the current technological standards. These changes enabled the design of LC polyesters with lower processing temperatures and the use of fewer starting materials which will inevitably save energy and money during their production.

In the case of polysulfones, changing the chemical structure at the end of the polymer chain facilitated the application of novel processing methods, such as 3D printing. The ability to process using this method reduces the amount of material waste during production and provides an opportunity to design novel parts with intricate structures, inaccessible through traditional means.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/99829
Date20 June 2019
CreatorsHeifferon, Katherine Valentine
ContributorsChemistry, Long, Timothy E., Turner, S. Richard, Moore, Robert Bowen, Williams, Christopher B.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeDissertation
FormatETD, application/pdf, application/pdf, application/pdf, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0032 seconds