Return to search

Thiophene Based Semiconductors: Synthesis and Characterizations

Diverse conformational transitions and aggregations of regioregular head-to-tail polyhexylthiophene in different environments have been studied by means of AFM and UV-vis spectroscopy. A helical conformation of the main chain with 12 thiophenes rings per each helical turn has been proposed. Length of the particles varies from several nanometers to several hundreds nanometers and can be adjusted by the solvents composition or concentration of PATs. Such well-defined organic semiconductor 1D particles can be used as building blocks for future nanoscale and molecular level electronic devices. Oligothiophenes represent one of the most promising class of semiconductive materials for FET fabrication because of their good mobility and environmental stability. However, most of unsubstituted oligothiophenes are insoluble that suppresses their potential industrial utility. On the first stage of the work, conformation, crystalline structure, molecular packing and charge carrier mobility of the highly soluble regiochemically pure [Beta]-substituted sexithiophene were systematically studied. It was found that [Beta, Beta´]-DH6T possesses moderate PR-TRMC charge carrier mobility, but rather low field-effect mobility. The investigation showed that such a poor macroscopic electrical properties of [Beta, Beta´]-DH6T originate neither from the twist of the conjugated system nor from the crystalline disorder, but rather from low-dense crystalline packing and "wrong" molecular orientation. To overcome these obstacles two thiophene-based azomethines were designed to optimize a solubility, self-assembly, and a charge carrier mobility. The idea was to utilize the ability of the amide group to form strong hydrogen bonds in non-polar solvents and in solid state, but to be easily broken in presence of polar solvents. Thus, at the stage of a dissolution and a deposition, when the solubility is important, the hydrogen bonding can be "switched off" simply by addition of polar solvents and then, after the removal of polar additives, the self-assembly can be "switched on". It was found that incorporation of azomethine and amide moieties in the [Alpha, Omega]-position, and hexyl chains in [Beta]-position of quaterthiophene, indeed considerably improves the self-assembly properties without suppression of the solubility. Self-assembly of azomethine oligomers with (QT-amide) and without amide moieties (QT-aniline) were monitored by UV-vis, XRD, and AFM. It was found that QT-amide, processed from solution, forms highly ordered layered (terrace) structures. This aggregation mode is similar to the self-assembly of unsubstituted conjugated oligomers (such as pentacene) occurred upon their evaporation in vacuum. The sum of charge carrier mobilities (PR-TRMC data) for QT-aniline was shown to be below the detectable limit, but the mobility of QT-amide was determined to be 1.10-2 cm2 V-1 s-1. The later is comparable with the mobilities of the best organic semiconductors. All these significant differences in properties of related compounds can be attributed to the hydrogen bonding between QT-amide molecules responsible for the observed self-assembly.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:24675
Date24 May 2005
CreatorsKiriy, Nataliya
ContributorsAdler, Hans-Jurgen, Dunsch, Lothar, Müllen, Klaus
PublisherTechnische Universität Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0025 seconds