Return to search

Inférence statistique pour des processus multifractionnaires cachés dans un cadre de modèles à volatilité stochastique / Statistical inference for hidden multifractionnal processes in a setting of stochastic volatility models

L’exemple paradigmatique d’un processus stochastique multifractionnaire est le mouvement brownien multifractionnaire (mbm). Ce processus gaussien de nature fractale admet des trajectoires continues nulle part dérivables et étend de façon naturelle le célèbre mouvement brownien fractionnaire (mbf). Le mbf a été introduit depuis longtemps par Kolmogorov et il a ensuite été « popularisé » par Mandelbrot ; dans plusieurs travaux remarquables, ce dernier auteur a notamment insisté sur la grande importance de ce modèle dans divers domaines applicatifs. Le mbm, quant à lui, a été introduit, depuis plus de quinze ans, par Benassi, Jaffard, Lévy Véhel, Peltier et Roux. Grossièrement parlant, il est obtenu en remplaçant le paramètre constant de Hurst du mbf, par une fonction H(t) qui dépend de façon régulière du temps t. Ainsi, contrairement au mbf, les accroissements du mbm sont non stationnaires et la rugosité locale de ses trajectoires (mesurée habituellement par l’exposant de Hölder ponctuel) peut évoluer significativement au cours du temps ; en fait, à chaque instant t, l’exposant de Hölder ponctuel du mbm vaut H(t). Notons quecette dernière propriété, rend ce processus plus flexible que le mbf ; grâce à elle, le mbm est maintenant devenu un modèle utile en traitement du signal et de l’image ainsi que dans d’autres domaines tels que la finance. Depuis plus d’une décennie, plusieurs auteurs se sont intéressés à des problèmes d’inférence statistique liés au mbm et à d’autres processus/champs multifractionnaires ; leurs motivations comportent à la fois des aspects applicatifs et théoriques. Parmi les plus importants, figure le problème de l’estimation de H(t), l’exposant de Hölder ponctuel en un instant arbitraire t. Dans ce type de problématique, la méthode des variations quadratiques généralisées, initialement introduite par Istas et Lang dans un cadre de processus à accroissements stationnaires, joue souvent un rôle crucial. Cette méthode permet de construire des estimateurs asymptotiquement normaux à partir de moyennes quadratiques d’accroissements généralisés d’un processus observé sur une grille. A notre connaissance, dans la littérature statistique qui concerne le mbm, jusqu’à présent, il a été supposé que, l’observation sur une grille des valeurs exactes de ce processus est disponible ; cependant une telle hypothèse ne semble pas toujours réaliste. L’objectif principal de la thèse est d’étudierdes problèmes d’inférence statistique liés au mbm, lorsque seulement une version corrompue de ce dernier est observable sur une grille régulière.Cette version corrompue est donnée par une classe de modèles à volatilité stochastique dont la définition s’inspire de certains travaux antérieurs de Gloter et Hoffmann ; signalons enfin que la formule d’Itô permet de ramener ce cadre statistique au cadre classique : « signal+bruit ». / The paradigmatic example of a multifractional stochastic process is multifractional Brownian motion (mBm). This fractal Gaussian process with continuous nowhere differentiable trajectories is a natural extension of the well-known fractional Brownian motion (fBm). FBm was introduced a longtime ago by Kolmogorov and later it has been made « popular» by Mandelbrot; in several outstanding works, the latter author has emphasized the fact that this model is of a great importance in various applied areas. Regarding mBm, it was introduced, more than fifteen years ago, by Benassi, Jaffard, Lévy Véhel, Peltier and Roux. Roughly speaking, it is obtained by replacing the constant Hurst parameter of fBm by a smooth function H(t) which depends on the time variable t. Therefore, in contrast with fBm, theincrements of mBm are non stationary and the local roughness of its trajectories (usually measured through the pointwise Hölder exponent) is allowed to significantly evolve over time; in fact, at each time t, the pointwise Hölder exponent of mBm is equal to H(t). It is worth noticing that the latter property makes this process more flexible than fBm; thanks to it, mBm has now become a useful model in the area of signal and image processing, aswell as in other areas such as finance. Since at least one decade, several authors have been interested in statistical inference problems connected with mBm and other multifractional processes/fields; their motivations have both applied and theoretical aspects. Among those problems, an important one is the estimation of H(t), the pointwise Hölder exponent at an arbitrary time t. In the solutions of such issues, the generalized quadratic variation method, which was first introduced by Istas and Lang in a setting of stationary increments processes, usually plays a crucial role. This method allows to construct asymptotically normal estimators starting from quadratic means of generalized increments of a process observed on a grid. So far, to our knowledge, in the statistical literature concerning mBm, it has been assumed that, the observation of the true values of this process on a grid, is available; yet, such an assumption does not always seem to be realistic. The main goal of the thesis is to study statistical inference problems related to mBm, when only a corrupted version of it, can be observed on a regular grid. This corrupted version is given by a class of stochastic volatility models whose definition is inspired by some Gloter and Hoffmann’s earlier works; last, notice that thanks to Itô formula this statistical setting can be viewed as the classical setting: « signal+noise ».

Identiferoai:union.ndltd.org:theses.fr/2011LIL10049
Date21 November 2011
CreatorsPeng, Qidi
ContributorsLille 1, Ayache, Antoine
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish, French
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0028 seconds