The world is facing a tough challenge regarding fulfilling human energy needs. Scientists are motivated to find alternative ways to the fossil fuel at a lower cost with little or no environmental pollution. Among the available renewable resources, the solar energy is an alternative energy to fossil fuel. Scientists are engaged in mimicking the photosynthesis to create the new energy devices such as dye sensitized solar cells. The fundamental theory and properties of the dye sensitized solar cells is given in the first chapter. In this research, the application of the different methods for surface alteration of SnO2 with water soluble porphyrins and phthalocyanine is studied. Using optical absorbance and steady state fluorescence studies, the formation of porphyrins and phthalocyanine discuss on the SnO2 surface is shown. Moreover, the different results of photoelectrochemical cells are show on chapter 2 to understand the porphyrin and phthalocyanine modified on SnO2 as electron injector. In summary, the application porphyrin and phthalocyanine of dimers as a broad band capturing photosensitized dye is discussed.
Identifer | oai:union.ndltd.org:unt.edu/info:ark/67531/metadc407761 |
Date | 12 1900 |
Creators | Lin, Chunyu |
Contributors | D'Souza, Francis, Chyan, Oliver Ming-Ren, Verbeck, Guido F. |
Publisher | University of North Texas |
Source Sets | University of North Texas |
Language | English |
Detected Language | English |
Type | Thesis or Dissertation |
Format | Text |
Rights | Public, Lin, Chunyu, Copyright, Copyright is held by the author, unless otherwise noted. All rights Reserved. |
Page generated in 0.0016 seconds