The improvement of performance and the maintenance of stability of a portable air-breathing PEMFC are studied in this thesis. The water content within proton exchange membrane affects strongly on the performance and stability of a PEMFC stack, in which water within membrane can form a conduction channel to provide hydrogen ion transferring from anode to cathode. The over-dried condition caused by a long time operation can also be avoided to prevent the membrane from damaging. Thus the proper humidification of a stack is important for a portable air-breathing PEMFC system.
The traditional humidifier is too bulky to be suitable for portable fuel cells. A simple humidification system developed in this research is making use of the water stored in the stack bottom and the self-generating heat by chemical reaction to drive the passive humidification system of this stack. The water at the bottom of the tank can be sucked with cotton threads in cathode and a piece of cotton cloth by capillary phenomenon and transfer to the membrane of MEA. The cotton threads humidification in cathode is enough in low and middle current density in this study. It is not enough in high current density due to the large water vapor dissipation in the cathode surface, so a cotton cloth in anode is added to increase the evaporating surface to supply water to membrane. This passive humidification system does not need extra energy, and it only employs the heat generated by the cells. The system follows the simple principle, which is always obeyed in a portable fuel cell system.
A 16-cell HFC stack developed in this research adopts carbon fibers as current collectors. Two pieces of 8-cell anodes is placed in the inner sides of the stack, and the 8-cell cathode is located on external sides, which is exposed directly to the ambient air. The 16-cell can connect in series or parallel. The experimental results show that it is helpful to add cotton threads in cathode and cotton cloth in anode to improve the stability of the 16-cell stack during a the long period operation. The 16-cell HFC stack has succeeded in the operation and charging for an IPhone, digital photo frame, and LED light. The experiments have proved that this type of the lightweight humidification system is helpful in the future portable hydrogen fuel cell applications.
Identifer | oai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0828112-151224 |
Date | 28 August 2012 |
Creators | Chang, Yu-Sheng |
Contributors | Shih-An Yang, Long-Jeng Chen, Chong-Fu Liou, Ming-Sa Li, Ru Yang |
Publisher | NSYSU |
Source Sets | NSYSU Electronic Thesis and Dissertation Archive |
Language | Cholon |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0828112-151224 |
Rights | user_define, Copyright information available at source archive |
Page generated in 0.0016 seconds