The research related to designing portable monitoring devices for physiological signals has been at its peak in the last decade or two. One of the main obstacles in building such devices is the effect of the subject's movements on the quality of the signal. There have been numerous studies addressing the problem of removing motion artifact from the electrocardiogram (ECG) and photoplethysmography (PPG) signals in the past few years. However, no such study exists for the Impedance Plethysmography (IP) signal. The IP signal can be used to monitor respiration in mobile devices. However, it is very susceptible to motion artifact. The main aim of this dissertation is to develop adaptive and non-adaptive filtering algorithms to address the problem of motion artifact reduction from the IP signal.
Identifer | oai:union.ndltd.org:vcu.edu/oai:scholarscompass.vcu.edu:etd-1564 |
Date | 28 June 2013 |
Creators | Ansari, Sardar |
Publisher | VCU Scholars Compass |
Source Sets | Virginia Commonwealth University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations |
Rights | © The Author |
Page generated in 0.0016 seconds