Linear Evolution Equations (LEE) have been studied extensively over many years. Their extension in the field of fractional calculus have been defined by Dαu(x, t) = Au(x, t), where α is the fractional order and Dα is a generalized differential operator. Two types of generalized differential operators were applied to the LEE in the state-of-the-art, producing the Riemann-Liouville and the Caputo time fractional evolution equations. However the extension of the new Caputo-Fabrizio derivative (CFFD) to these equations has not been developed. This work investigates existing fractional derivative evolution equations and analyze the generalized linear evolution equations with non-singular ker- nel derivative. The well-posedness of the extended CFFD linear evolution equation is demonstrated by proving the existence of a solution, the uniqueness of the existing solu- tion, and finally the continuous dependence of the behavior of the solution on the data and parameters. Extended evolution equations with CFFD are applied to kinetics, heat diffusion and dispersion of shallow water waves using MATLAB simulation software for validation purpose. / Mathematical Science / M Sc. (Applied Mathematics)
Identifer | oai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:unisa/oai:uir.unisa.ac.za:10500/25774 |
Date | 02 1900 |
Creators | Toudjeu, Ignace Tchangou |
Contributors | Goufo, Emile Franc Doungmo, Kubeka, Amos Soweto |
Source Sets | South African National ETD Portal |
Language | English |
Detected Language | English |
Type | Dissertation |
Format | 1 online resources (x, 65 leaves) : illustrations, graphs, application/pdf |
Page generated in 0.0021 seconds