Techniques from the theory of matrix problems have proven to be helpful for studying problems within representation theory. In particular, matrix problems are well suited to use in problems related to classifying indecomposable representations of quivers and of posets. However, throughout the literature, there are many different types of matrix problems and little clarification of the relationships between them. In this thesis, we choose six types of matrix problems, place them all within a common framework and find correspondences between them. Moreover, we show that their use in the classification of finite-dimensional representations of quivers and posets are, in general, well-founded. Additionally, we investigate a direct relationship between the problem of classifying quiver representations and the problem of classifying poset representations.
Identifer | oai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/31598 |
Date | January 2014 |
Creators | Cicala, Daniel |
Contributors | Blute, Richard, Savage, Alistair |
Publisher | Université d'Ottawa / University of Ottawa |
Source Sets | Université d’Ottawa |
Language | English |
Detected Language | English |
Type | Thesis |
Page generated in 0.0018 seconds