Return to search

Semidefinite Programming and Stability of Dynamical System

In the first part of the thesis we present several interior point algorithms for solving certain positive definite programming problems. One of the algorithms is adapted for finding out whether there exists or not a positive definite matrix which is a real linear combination of some given symmetric matrices A1,A2, . . . ,Am. In the second part of the thesis we discuss stability of nonlinear dynamical systems. We search using algorithms described in the first part, for Lyapunov functions of a few forms. A suitable Lyapunov function implies the existence of a hyperellipsoidal attraction region for the dynamical system, thus guaranteeing stability.

Identiferoai:union.ndltd.org:GEORGIA/oai:digitalarchive.gsu.edu:math_theses-1003
Date12 January 2006
CreatorsStovall, Kazumi Niki
PublisherDigital Archive @ GSU
Source SetsGeorgia State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceMathematics Theses

Page generated in 0.0019 seconds