Return to search

Laser spectroscopy of the Fourth Positive System of carbon monoxide isotopomers

Thesis (PhD (Physics))--University of Stellenbosch, 2006. / Carbon monoxide (CO) is a diatomic molecule of particular interest in astrophysics, due to
its high abundance in interstellar space. The Fourth Positive System A1Π−X1Σ+ of CO is an
important feature in the vacuum ultraviolet (VUV) region of the electromagnetic spectrum
in astronomical observations, especially in high-resolution spectra recorded by satellite-based
spectrographs. The interpretation of these astronomically detected spectra requires accurate
laboratory wavelengths to serve as rest wavelengths and to resolve possible Doppler-shifts.
Such rest wavelengths are known for the 12C16O, 13C16O and 12C18O isotopomers for all
astronomically observed spectral lines of the Fourth Positive System. The only laboratory
wavelengths currently available for the Fourth Positive System of the 12C17O isotopomer
have been determined in a previous work carried out in our laboratory for the vibronic band
A1Π(v0 = 3)−X1Σ+(v00 = 0). The present study continues this work for the other vibronic
bands which have been detected astronomically, namely A1Π(v0 = 2 − 5)−X1Σ+(v00 = 0).
The A1Π(v0 = 0− 1)−X1Σ+(v00 = 0) vibronic bands have also been investigated due to their
probability for future astronomical detection. Rotationally-resolved spectra of these six vibronic
bands were obtained by selective rovibronic laser excitation, and subsequent detection
of the undispersed fluorescence, observed as a function of the excitation wavelength in the
VUV. A tunable narrow-bandwidth VUV laser source is used for excitation, and the CO gas
sample is introduced by supersonic expansion. Flow-cooling in the supersonic expansion to
rotational temperatures roughly corresponding to temperatures in the interstellar medium
simplifies and aids the spectral analysis of the spectral lines of interest. The cold conditions
in the supersonic expansion facilitates a high sensitivity for detection of the low-J lines, and
allows the detection of rare isotopomers of CO in natural abundance. The experimental
setup has been improved in the present study by the addition of a vacuum monochromator,
facilitating an improved characterisation of the VUV source. Furthermore, a number
of experimental conditions have been optimised for the detection of rare CO isotopomers,
significantly increasing the signals of these lines in the spectra. The combination of this
increase in sensitivity and the addition of the vacuum monochromator to the experimental
setup, allowed the simultaneous detection of absorption spectra with the fluorescence spectra
as an additional source of information in spectral analysis. The increased sensitivity
also contributed to the detection of a large number of spectral lines of interest, with some
additional lines identified in the previously studied vibronic band. Spectral lines of 12C16O,
13C16O, 12C18O and 12C17O were detected in each vibronic band, allowing accurate calibration
of the spectra. A total of 29 new lines of 12C17O were recorded in the six vibronic
bands investigated. Additionally, 10 new singlet-triplet lines of 12C16O were recorded in
the wavelength regions investigated. The new wavelengths of 12C17O have been applied to
calculate consistent heliocentric velocities of a gas cloud toward the star X Persei, obtained
from spectra of the different CO isotopomers taken by the Hubble space telescope.

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:sun/oai:scholar.sun.ac.za:10019.1/1219
Date03 1900
CreatorsDu Plessis, Anton
ContributorsRohwer, E. G., Steenkamp, C. M., University of Stellenbosch. Faculty of Science. Dept. of Physics.
PublisherStellenbosch : University of Stellenbosch
Source SetsSouth African National ETD Portal
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Format2002011 bytes, application/pdf
RightsUniversity of Stellenbosch

Page generated in 0.0023 seconds