Return to search

Case Study: Settlement at Nepal Hydropower Dam during the 2014-2015 Gorkha Earthquake Sequence

The Tamakoshi Dam in Nepal experienced 19 cm of settlement due to three earthquakes that took place from December 14, 2014 to May 12, 2015. This settlement caused massive damage and halted construction and was believed to have been caused by seismic compression. Seismic compression is the accrual of contractive volumetric strain in sandy soils during earthquake shaking for cases where the generated excess pore water pressures are low. The purpose of this case study is to investigate the settlements of the dam intake block relative to the right abutment block of the dam during the three earthquakes. Towards this end, soil profiles for the dam were developed from the boring logs and suites of ground motions were selected and scaled to be representative of the shaking at the base of the dam for the two of the three earthquakes which were well documented. Equivalent linear analysis was completed for the suites of ground motions to produce shear strain time histories which were then utilized in the Jiang et al. (2020) proposed procedure for seismic compression prediction. The results were found to not align with the settlement that was observed in the field, so post-liquefaction consolidation was also considered to be a possible cause of the settlement. The results from that analysis also showed that consideration of post-liquefaction consolidation did not yield settlements representative of those observed in the field. More detailed studies are recommended to assess the settlements that were observed at the dam site, particularly analyses that take into account below and above grade topographic effects on the ground motions and settlements at the ground surface. / Master of Science / The Tamakoshi Dam in Nepal experienced 19 cm of settlement due to three earthquakes that took place from December 14, 2014 to May 12, 2015. This settlement caused massive damage and halted construction and was believed to have been caused by seismic compression. Seismic compression is the accrual of contractive volumetric strain in sandy soils during earthquake shaking for cases where the generated excess pore water pressures are low. The purpose of this case study is to investigate the settlements of the dam intake block relative to the right abutment block of the dam during the three earthquakes. Representative soil profiles were developed based on data collected from the site for analysis of the settlement. Two approaches were used to compute predicted settlement, one which considered only seismic compression as the cause of settlement and a hybrid method that considered both seismic compression and post-liquefaction consolidation. Both approaches predicted settlement values that were less than what was observed in the field. It was found that the ground motion prediction equations used in the analysis were not representative of the tectonic setting in Nepal and thus was the main reason for the under-prediction. The relevance of this research lies in using methodology developed in academia to analyze a real world event and draw conclusions about the methodology's applicability.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/102890
Date30 March 2021
CreatorsVuper, Ailie Marie
ContributorsCivil and Environmental Engineering, Green, Russell A., Mitchell, James K., Rodriguez-Marek, Adrian
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeThesis
FormatETD, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0014 seconds