Return to search

Membrane Properties Involved in Calcium-Stimulated Microparticle Release from the Plasma Membranes of S49 Lymphoma Cells

The mechanism of microparticle shedding from the plasma membrane of calcium-loaded cells has been investigated in erythrocytes and platelets. Recent studies have revealed the physiological and clinical importance of microparticle release from nucleated cells such as lymphocytes and endothelium. The experiments of this study were designed to address whether simple mechanisms discovered in platelets and erythrocytes also apply to the more complex nucleated cells. Four such mechanisms were addressed: potassium efflux, transbilayer phosphatidylserine migration, cytoskeleton degradation, and membrane lipid order. The rate and amount of microparticle release in the presence of a calcium ionophore, ionomycin, was assayed by light scatter at 500 nm. To inhibit the calcium-activated potassium current, cells were exposed to 1 mM quinine or a high-potassium buffer. Both interventions substantially attenuated microparticle shedding induced by ionomycin. Microparticle release was also greatly reduced in a lymphocyte cell line deficient in the expression of scramblase, the enzyme responsible for calcium-stimulated phosphatidylserine migration to the cell surface. This result indicated that such phosphatidylserine exposure is also required for microparticle shedding. The importance of cytoskeletal rearrangement was evaluated through the use of E64-d, a calpain inhibitor, which appeared to have no affect on release. Thus, if cytoskeleton degradation is important for microparticle release, a different enzyme or protein must be involved. Finally, the effect of membrane physical properties was addressed by varying the experimental temperature (32–42 °C). A significant positive trend in the rate of microparticle release as a function of temperature was observed. Fluorescence experiments with trimethylammoniumdiphenylhexatriene and patman revealed significant differences in the level of apparent membrane order along that temperature range. Ionomycin treatment appeared to cause further disordering of the membrane, although the magnitude of this change was minimally temperature-sensitive. Thus, it was concluded that microparticle release depends more on the initial level of membrane order than on the change imposed by calcium uptake. In general, mechanisms involved in particle release from platelets and erythrocytes appeared relevant tolymphocytes with the exception of the hydrolytic enzyme involved in cytoskeletal degradation.

Identiferoai:union.ndltd.org:BGMYU2/oai:scholarsarchive.byu.edu:etd-4300
Date14 August 2012
CreatorsCampbell, Lauryl Elizabeth
PublisherBYU ScholarsArchive
Source SetsBrigham Young University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations
Rightshttp://lib.byu.edu/about/copyright/

Page generated in 0.0022 seconds