The electrophysiological properties of somatic and dendritic membranes of CA1 pyramidal neurons were investigated using the rat in vitro hippocampal slice preparation. A comprehensive analysis of extracellular field potentials, current-source density (CSD) and intracellular activity has served to identify the site of origin of action potential (AP) discharge in CA1 pyramidal neurons.
1) Action potential discharge of CA1 pyramidal cells was evoked by suprathreshold stimulation of the alveus (antidromic) or afferent synaptic inputs in stratum oriens (SO) or stratum radiatum (SR). Laminar profiles of the "stimulus evoked" extracellular field potentials were recorded at 25µm intervals along the dendro-somatic axis of the pyramidal cell and a 1-dimensional CSD analysis applied.
2) The shortest latency population spike response and current sink was recorded in stratum pyramidale or the proximal stratum oriens, a region corresponding to somata and axon hillocks of CA1 pyramidal neurons. A biphasic positive/negative spike potential (current source/sink) was recorded in dendritic regions, with both components increasing in peak latency through the dendritic field with distance from the border of stratum pyramidale.
3) A comparative intracellular analysis of evoked activity in somatic and dendritic membranes revealed a basic similarity in the pattern of AP discharge at all levels of the dendro-somatic axis. Stimulation of the alveus, SO, or SR evoked a single spike while injection of depolarizing current evoked a repetitive train of spikes grouped for comparative purposes into three basic patterns of AP discharge.
4) Both current and stimulus evoked intracellular spikes displayed a progressive decline in amplitude and increase in halfwidth with distance from the border of stratum pyramidale.
5) The only consistent voltage threshold for intracellular spike discharge was found in the region of the cell body, with no apparent threshold for spike activation in dendritic locations.
6) Stimulus evoked intradendritic spikes were evoked beyond the peak of the population spike recorded in stratum pyramidale, and aligned with the biphasic extradendritic field potential shown through laminar profile analysis to conduct with increasing latency from the cell body layer.
The evoked characteristics of action potential discharge in CA1 pyramidal cells are interpreted to indicate the initial generation of a spike in the region of the soma-axon hillock and a subsequent retrograde spike invasion of dendritic arborizations. / Medicine, Faculty of / Cellular and Physiological Sciences, Department of / Graduate
Identifer | oai:union.ndltd.org:UBC/oai:circle.library.ubc.ca:2429/25989 |
Date | January 1985 |
Creators | Turner, Ray William |
Publisher | University of British Columbia |
Source Sets | University of British Columbia |
Language | English |
Detected Language | English |
Type | Text, Thesis/Dissertation |
Rights | For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use. |
Page generated in 0.0023 seconds