Return to search

The development of a microcomputer controlled multielectrode potentiostat and a 32-electrode thin-layer flow-cell /

The thin-layer flow-cell incorporated an array of 32 gold strip electrodes in a serial configuration opposite a platinum counter electrode. The cell body was made of Macor glass ceramic. A photolithographic procedure for etching the Macor and a simple method of applying a gold ink was devised. Resistive feedback current-to-voltage converters independently controlled the potential difference between the electrodes of the array and the common counter electrode. A microcomputer and a customized high speed data acquisition interface recorded the current response of each electrode. An expression for the faradaic response of a single electrode within a rectangular flow channel was modified to predict the behavior of the multi-electrode flow-cell. The quinone/hydroquinone redox system was used to evaluate the performance of the detector. Summing the signals from the array when all electrodes were held at the same potential improved the signal-to-noise ratio. Hydrodynamic curves were reconstructed from the currents measured at each electrode when a ramp potential profile was applied to the array.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.75690
Date January 1988
CreatorsDeAbreu, Michael Paul
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageDoctor of Philosophy (Department of Chemistry.)
RightsAll items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated.
Relationalephsysno: 000665147, proquestno: AAINL46040, Theses scanned by UMI/ProQuest.

Page generated in 0.0016 seconds