Return to search

Fabrication of metal matrix composite by powder metallurgy method =: 以粉末冶金術製造金屬基複合物. / 以粉末冶金術製造金屬基複合物 / Fabrication of metal matrix composite by powder metallurgy method =: Yi fen mo ye jin shu zhi zao jin shu ji fu he wu. / Yi fen mo ye jin shu zhi zao jin shu ji fu he wu

Chong, Kam Cheong. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1998. / Includes bibliographical references. / Text in English; abstract also in Chinese. / Chong, Kam Cheong. / ACKNOWLEDGMENT --- p.i / ABSTRACT --- p.ii / 摘要 --- p.iv / Table of contents --- p.v / Chapter 1 --- Introduction / Chapter 1.1 --- Metal Matrix Composites / Chapter 1.1.1 --- Background --- p.1-1 / Chapter 1.1.2 --- Some metallic matrix materials --- p.1-2 / Chapter 1.1.2.1 --- Aluminum alloys --- p.1-2 / Chapter 1.1.2.2 --- Titanium alloys --- p.1-3 / Chapter 1.1.3 --- Different kinds of reinforcements --- p.1-3 / Chapter 1.2 --- Conventional fabrication Methods --- p.1-5 / Chapter 1.2.1 --- Primary liquid phase processing --- p.1-5 / Chapter 1.2.1.1 --- Squeeze casting --- p.1-5 / Chapter 1.2.1.2 --- Spray deposition --- p.1-5 / Chapter 1.2.1.3 --- Slurry casting --- p.1-5 / Chapter 1.2.1.4 --- In Situ processing --- p.1-6 / Chapter 1.2.2 --- Primary solid state processing --- p.1-6 / Chapter 1.2.2.1 --- Physical vapour deposition (PVD) --- p.1-6 / Chapter 1.2.2.2 --- Powder blending and sintering --- p.1-7 / Figures for chapter 1 --- p.1-9 / Tables for chapter 1 --- p.1-14 / References --- p.1-15 / Chapter 2 --- Powder metallurgy --- p.2-1 / Chapter 2.1 --- Introduction --- p.2-1 / Chapter 2.2 --- Fabrication of metal matrix-particulate composites --- p.2-2 / Chapter 2.3 --- Our motivation --- p.2-4 / Figures for chapter 2 --- p.2-5 / References --- p.2-7 / Chapter 3 --- Effects of sintering in processing of metal matrix composites --- p.3-1 / Chapter 3.1 --- Introduction of sintering processing --- p.3-1 / Chapter 3.1.1 --- Solid state sintering --- p.3-2 / Chapter 3.1.2 --- Liquid state sintering --- p.3-5 / Chapter 3.1.3 --- Sintering in metal matrix composites(reactive sintering) --- p.3-7 / Figures for chapter 3 --- p.3-11 / Reference --- p.3-14 / Chapter 4 --- Experiments --- p.4-1 / Chapter 4.1 --- Introduction --- p.4-1 / Chapter 4.2 --- Methodology --- p.4-3 / Chapter 4.2.1 --- High temperature furnace experiment --- p.4.3 / Chapter 4.2.2 --- Arc-melting furnace experiment --- p.4-4 / Chapter 4.3 --- Sample preparations --- p.4-4 / Chapter 4.3.1 --- Sample requirements --- p.4-4 / Chapter 4.3.2 --- Sample milling --- p.4-6 / Chapter 4.3.3 --- Cold pressing --- p.4-6 / Chapter 4.3.4 --- Annealing conditions for high-temperature furnace --- p.4-7 / Chapter 4.3.4.1 --- Different sintering temperatures --- p.4-7 / Chapter 4.3.4.2 --- Different sintering duration --- p.4-8 / Chapter 4.3.5 --- Sample conditions in arc-melting furnace --- p.4-8 / Chapter 4.4 --- Instrumentation --- p.4-10 / Chapter 4.4.1 --- Arc-melting furnace --- p.4-10 / Chapter 4.4.2 --- Vickers hardness tester --- p.4-11 / Chapter 4.4.3 --- X-Ray powder diffractometer (XPD) --- p.4-13 / Chapter 4.4.4 --- Scanning electron microscopy & energy dispersive x-ray analysis --- p.4-15 / References --- p.4-18 / Chapter 5 --- Results / Chapter 5.1 --- High-temperature furnace --- p.5-1 / Chapter 5.1.1 --- XPD results --- p.5-1 / Chapter 5.1.2 --- Different sintering temperatures in 10 weight percent of Cr203 - A1 samples with 1 hour sintering time --- p.5-2 / Chapter 5.1.3 --- Different sintering temperatures in 15 weight percent of Cr203 一 A1 samples with 1 hour sintering time --- p.5-6 / Chapter 5.1.4 --- Different sintering temperatures in 20 weight percent of Cr203 ´ؤ A1 samples with 1 hour sintering time --- p.5-10 / Chapter 5.1.5 --- Different sintering temperatures in 30 weight percent of Cr203 ´ؤ A1 samples with 1 hour sintering time --- p.5-13 / Chapter 5.1.6 --- Different sintering time for 10 weight percent of Cr203 ´ؤ A1 samples at 1100°C sintering temperature --- p.5-19 / Chapter 5.1.7 --- Different sintering time for 15 weight percent of Cr203 ´ؤ A1 samples at 1100°C sintering temperature --- p.5-21 / Chapter 5.2 --- Arc-melting furnace --- p.5-24 / Chapter 5.2.1 --- XPD results --- p.5-24 / Chapter 5.2.2 --- Samples that were melted in arc-melting furnace --- p.5-25 / Chapter 5.2.3 --- Powder samples that were melted in arc-melting furnace --- p.5-28 / Figures for chapter 5 --- p.5-30 / References --- p.5-55 / Chapter 6 --- Discussions --- p.6-1 / Chapter 6.1 --- Chemical reactions --- p.6-1 / Chapter 6.2 --- Sintering --- p.6-6 / Chapter 6.2.1 --- Conditions for having larger Al13Cr2 intermetallic compound --- p.5-7 / Chapter 6.3 --- Vickers hardness results --- p.6-10 / Chapter 6.4 --- Comparisons between the two furnace results --- p.6-12 / Chapter 6.4.1 --- Cooling rates --- p.6-12 / Chapter 6.4.2 --- Volume fraction of all the intermetallic compounds --- p.6-14 / Chapter 6.4.3 --- Pore sizes --- p.6-15 / Chapter 6.4.4 --- Vickers hardness --- p.6-16 / References --- p.6-17 / Chapter 7 --- Conclusions and suggestions for further studies --- p.7-1 / BIBLIOGRAPHY

Identiferoai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_322321
Date January 1998
ContributorsChong, Kam Cheong., Chinese University of Hong Kong Graduate School. Division of Physics.
Source SetsThe Chinese University of Hong Kong
LanguageEnglish, Chinese
Detected LanguageEnglish
TypeText, bibliography
Formatprint, 1 v. (various pagings) : ill. ; 30 cm.
RightsUse of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Page generated in 0.0025 seconds