Amorphous and nanostructured Al-based alloys have attracted significant interest owing to their promising properties, including high strength combined with low density. Unfortunately, the production of these advanced materials is limited to powders or ribbons with thickness of less than 100 micrometers due to the reduced glass forming ability of the Al-based alloys. Powder metallurgy through pressure-assisted sintering is a good solution to overcome the size limitation of these materials.
In this thesis, Al84Gd6Ni7Co3 glassy powders were consolidated into high-strength bulk materials by hot pressing. The sintering behavior and the microstructural evolution during hot pressing were analyzed as a function of temperature. The results reveal that, through the careful control of the sintering temperature, the combined devitrification and consolidation of the amorphous Al84Gd6Ni7Co3 powders can be achieved, leading to bulk samples with the desired hybrid microstructure and with excellent room temperature mechanical properties.
Beside the sintering temperature, the microstructural state of the starting material is critical in order to obtain bulk samples with the desired microstructure and related properties. Consequently, the variation of the initial structural state of the powders as well as of their thermal stability and phase evolution during heating may be used for further tuning the mechanical performance of the hot pressed Al84Gd6Ni7Co3 samples.
In order to analyze this aspect, ball milling was used to vary the crystallization behavior of the gas-atomized Al84Gd6Ni7Co3 glassy powder. The influence of milling on microstructure and thermal stability was investigated as a function of the milling time. The results show that the traces of crystalline phases present in the as-atomized powder decrease gradually with increasing the milling time. The thermal stability of the fcc-Al primary phase increases while the thermal stability of the intermetallic phases decreases with increasing milling. Moreover, significant improvement in hardness occurs after milling, which is attributed to the amorphization of the residual crystalline phases present in the as-atomized powder. These finding demonstrate that milling is an effective way to change the initial structural state of the powders and to control the thermal stability of the material.
The effect of the microstructural state of the starting material on the mechanical properties of the consolidated samples was investigated in detail. For this, the milled Al84Gd6Ni7Co3 glassy powders were consolidated into bulk specimens by hot pressing. These materials exhibit superior mechanical properties than the samples produced from the as-atomized powder: record high yield strength of 1.7 GPa and fracture strength exceeding 1.8 GPa. This is combined with a plastic strain of about 4 %, Young’s modulus of 120 GPa and density of 3.75 g/cm3. A bimodal microstructure consisting of coarse grained and fine grained regions was achieved in the hot pressed samples by properly controlling the milling process. The exceptionally high strength is attributed to the increased volume fraction of the fine regions, whereas the plastic deformation is favored by the coarse regions, which are able to hinder crack propagation during loading. In addition, the fracture toughness is also improved by the existence of the coarse regions.
The tribological properties of the Al84Gd6Ni7Co3 bulk samples were also evaluated. The wear resistance of the bulk samples produced from the milled powder is enhanced with respect to the specimens fabricated from the as-atomized powder, and both alloys exhibit improved wear properties compared to pure aluminum and Al88Si12. Abrasive wear is the main mechanism for these alloys.
Finally, the corrosion resistance of these alloys was studied. The results indicate that the Al84Gd6Ni7Co3 bulk material produced from the as-atomized powder has better corrosion resistance than the samples obtained from the milled powder. The main corrosion behavior for these alloys is pit corrosion, intermetallic particle etchout and the corrosion of the Al-rich inter-particle areas.
These results clearly demonstrate that, by the proper selection of the sintering temperature and through the appropriate choice of the initial structural state of the powders, the combined devitrification and consolidation of amorphous precursors can be successfully used to produce bulk amorphous/nanostructured Al-based materials with tunable physical and mechanical properties. This expands the known boundaries of Al alloys and offers a new route for the development of novel and innovative high-performance Al-based materials capable to meet specific requirements.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:14-qucosa-149936 |
Date | 19 August 2014 |
Creators | Wang, Zhi |
Contributors | Technische Universität Dresden, Fakultät Maschinenwesen, Prof. Dr.-Ing, Dr. hc. habil. Jürgen Eckert, Prof. Dr. Zhijie Yan |
Publisher | Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | doc-type:doctoralThesis |
Format | application/pdf |
Page generated in 0.0029 seconds