abstract: As global energy demand has dramatically increased and traditional fossil fuels will be depleted in the foreseeable future, clean and unlimited renewable energies are recognized as the future global energy challenge solution. Today, the power grid in U.S. is building more and more renewable energies like wind and solar, while the electric power system faces new challenges from rapid growing percentage of wind and solar. Unlike combustion generators, intermittency and uncertainty are the inherent features of wind and solar. These features bring a big challenge to the stability of modern electric power grid, especially for a small scale power grid with wind and solar. In order to deal with the intermittency and uncertainty of wind and solar, energy storage systems are considered as one solution to mitigate the fluctuation of wind and solar by smoothing their power outputs. For many different types of energy storage systems, this thesis studied the operation of battery energy storage systems (BESS) in power systems and analyzed the benefits of the BESS. Unlike many researchers assuming fixed utilization patterns for BESS and calculating the benefits, this thesis found the BESS utilization patterns and benefits through an investment planning model. Furthermore, a cost is given for utilizing BESS and to find the best way of operating BESS rather than set an upper bound and a lower bound for BESS energy levels. Two planning models are proposed in this thesis and preliminary conclusions are derived from simulation results. This work is organized as below: chapter 1 briefly introduces the background of this research; chapter 2 gives an overview of previous related work in this area; the main work of this thesis is put in chapter 3 and chapter 4 contains the generic BESS model and the investment planning model; the following chapter 5 includes the simulation and results analysis of this research and chapter 6 provides the conclusions from chapter 5. / Dissertation/Thesis / Masters Thesis Electrical Engineering 2014
Identifer | oai:union.ndltd.org:asu.edu/item:25804 |
Date | January 2014 |
Contributors | Dai, Daihong (Author), Hedman, Kory W (Advisor), Zhang, Muhong (Committee member), Ayyanar, Raja (Committee member), Arizona State University (Publisher) |
Source Sets | Arizona State University |
Language | English |
Detected Language | English |
Type | Masters Thesis |
Format | 84 pages |
Rights | http://rightsstatements.org/vocab/InC/1.0/, All Rights Reserved |
Page generated in 0.0017 seconds