Return to search

Modeling Daily Power Demand in Southern Kentucky: A Single Household Approach

In this study, we use a nonparametric technique, locally weighted robust least squares regression (LOESS), to forecast a 24 hour demand profile at the household level and compare it to existing aggregate demand models discussed in literature. Of these aggregate demand models, a quadratic autoregressive model was selected to be used as a basis for comparison with the LOESS forecasts. It was our goal to automate the forecasting process by using the goodness of fit metric, AICCI, for smoothing parameter selection. The statistical workflow was executed using SAS and data was provided by the Glasgow Electric Plant Board of Barren County, Kentucky. Results show that LOESS outperformed the autoregressive model in roughly 80% of all cases and than using LOESS alone or as part of an ensemble model is a feasible approach to automating future household demand profile for the purpose of generating different levels of power demand profile aggregation as needed by Glasgow Electronic Plant Board.

Identiferoai:union.ndltd.org:WKU/oai:digitalcommons.wku.edu:theses-2204
Date01 August 2012
CreatorsDickson, Craig M.
PublisherTopSCHOLAR®
Source SetsWestern Kentucky University Theses
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceMasters Theses & Specialist Projects

Page generated in 0.0012 seconds