Return to search

High-Power Diode Laser Surface Hardening Within a Machining Center

<p> Flexible manufacturing systems and lean production philosophies are in increasing industrial demand. Multiple manufacturing processes integrated into stand alone automated equipment can be utilized to greatly reduce operation costs. New technologies are continually being developed that can be easily combined with related manufacturing processes. Flexible machining and surface hardening operations can be realized in a single set-up by integrating a high-power diode laser (HPDL) within a machine tool structure.</p> <p> The following research presents the concept of integrated laser surface hardening within a machine tool environment. Experimental work was performed using a HPDL for transformation hardening of AISI 4140 steel.</p> <p> Both quasi-steady analytical and transient finite element heat transfer models have been developed. Solutions of the models are compared, which show that the more sophisticated finite element modeling is necessary only if accuracy of peak surface
temperature is important. Otherwise, the simpler but faster analytical model can be used to describe the temperature profiles during laser heating.</p> <p> A novel approach using temperature indicating lacquers was shown to be a simple and reliable tool for temperature measurement. The analytical model was further used to find a best fit with the experimental measurements to estimate the fraction of laser power absorbed by the workpiece surface. With the aid of the model, it was shown that the austenite transformation temperature is highly dependent on the scanning speed. For slower speeds, the transform temperature was closer to the A3 temperature given by the iron-iron carbide phase diagram. Tests performed at faster scanning speeds indicated transformation temperatures as high as 1230 °C.</p> <p> Experiments were divided into three series. The first series was performed at slow scanning speeds (200-1000 mm/min) and low laser powers (200-500 W). Hardening was executed on flat workpieces with the laser scanning along a linear path. The second and third test series were performed at fast scanning speeds (2000-8000 mm/min) and higher laser powers (1000-2000 W) with hardening done on rotating cylindrical workpieces. The third tests series consisted of two laser passes in an attempt to increase the penetration depth of the hardened layer. These tests resulted in severe distortion due to melting that would require nearly the entire hardened layer to be machined away post heat treatment. However, if the melting temperature is not significantly exceeded multiple laser passes could be used to increase the thickness of the hardened layer.</p> <p> Higher case depths were realized for the slow tests since these tests have a greater laser-work interaction time. During laser treatment, the uncoated workpieces were left exposed to allow for oxidation and melting in order to increase the fraction of absorbed laser power. The absorptivity is shown to be as high as 85% for these tests.</p> <p> Results are presented in a form useful in selection of laser power and scanning speed to obtain the desired level of hardening, without having to resort to complex analytical or numerical models. Investigations into in-process monitoring show that measurement of surface temperature using an infrared thermometer could be used to
control the generated hardened layer reducing process scrap.</p> / Thesis / Master of Applied Science (MASc)

Identiferoai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/21888
Date12 1900
CreatorsStenekes, Jeremiah J.
ContributorsKoshy, Philip, Elbestawi, Mohamed A., Mechanical Engineering
Source SetsMcMaster University
Languageen_US
Detected LanguageEnglish
TypeThesis

Page generated in 0.002 seconds