Return to search

Predicting the renewable energy portfolio for the southern half of the United States through 2050 by matching energy sources to regional needs

Worldwide energy consumption is estimated to double between 2008 and 2035. Over-dependence on energy imports from a few, often politically unstable countries, and unpredictable oil and gas prices, pushes energy to a critical agenda. While there is an agreement that we need to change the production and consumption of energy, there is still disagreement about the specific changes that are needed and how they can be achieved.
The conventional energy plans relying primarily on fossil fuels and nuclear technologies, which are in need of transformation due to limited resources and carbon dioxide emissions. Energy efficiency improvements and renewable energy should play a leading role in the America's energy future. Energy and environmental organizations believe that renewable energy and energy efficiency can meet half of the world's energy needs by 2050.
This thesis describes a model that predicts renewable energy portfolios for the Southern portion of the United States, by evaluating multiple renewable energy sources such as solar, wind, hydropower, biomass, and geothermal. The Southern US is divided into three regions: Southwest, South Central, and Southeast, which are chosen given their location and the level of abundance of renewable resources, thereby minimizing inefficiencies and losses associated to the present generation system. A mathematical predictor takes into account variables such as supply/demand, non-renewable/renewable sources, and time.
From the results, the Southwest and South Central regions confirm an surplus of renewable electricity by 2050, but the Southeast region does not have enough renewable resources to detach itself from the use of fossil fuels. The South Central region begins producing a surplus of renewable energy in 2014 and reaches an excess amount of 14,552 billion KWh by 2050. This means there will be no need to transfer electricity over long distances, which will increase the overall efficiency of electrical generation.

Identiferoai:union.ndltd.org:pacific.edu/oai:scholarlycommons.pacific.edu:uop_etds-1807
Date01 January 2012
CreatorsYee, Victoria E.
PublisherScholarly Commons
Source SetsUniversity of the Pacific
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceUniversity of the Pacific Theses and Dissertations

Page generated in 0.0016 seconds