Return to search

Utvärdering av Galileo HAS Precise Point Positioning : En utvärdering av Galileo HAS fas 1 genom statisk och semi-kinematisk mätning i olika mätmiljöer / Evaluation analysis of Galileo HAS Precise Point Positioning : An evaluation of Galileo HAS phase 1 through static and semi-kinematic measurement in different environments

Examensarbetet har undersökt Galileo HAS (High Accuracy Service), en satellitmeddelandekorrektions tjänst utvecklad av Europeiska unionens rymdprogrambyrå (EUSPA). Tjänsten syftar till att erbjuda positionsbestämning med decimeter precision och fungerar som en förbättring av befintliga globala gratistjänster. Galileo HAS kommer inte konkurrera med professionella betaltjänster då dessa erbjuder betydligt högre precision ner till centimeternivå. Galileo HAS är implementerat i två servicenivåer och tre faser. Fas 1 lanserades den 24 januari 2023, vilket inkluderar klock-, ban- och kodkorrektioner men inte faskorrektioner. I fas 1 erbjuds tjänsten med en avslappnad noggrannhet på < 2 dm i plan och < 4 dm i höjd, detta innebär att mätningar förväntas uppnå kraven till viss del. Framtida och slutliga fasen, fas 2, kommer erbjuda de lovade noggrannheterna för fas 1 då faskorrektioner tillkommer. I studien utvärderades mätkvaliteten med HAS-korrektioner med hjälp av mottagaren Arrow Gold + och en iPad som handenhet. Applikationerna EOS Tools PRO och ArcGIS Field Maps användes för att genomföra och följa mätningarna i realtid. Mätningarna utfördes i tre olika miljöer: bra, medelsvår och svåra förhållanden. Statisk och semi-kinematisk detaljmätning utfördes i respektive mätmiljö. En känd punkt i respektive miljö användes till den statiska mätningen. Statisk mätning genomfördes i 2 timmar totalt 4 gånger. Till studien valdes 12 detaljer med låg sannolikhet att rubbas under arbetets gång inför detaljmätning. Mätningen genomfördes genom att samla in 5 stycken 1-sekundersmätningar och skapa en medelpunkt av dessa i ArcGIS Field Maps. Varje detalj mättes 4 gånger var för beräkning av spridningen. Resultaten visade att vid statisk mätning uppnåddes fixlösning, vilket i detta fall innebär en mätkvaliteten under 1 dm enligt instrumentet, enbart i bra miljö och vid ett fall i medelsvår miljö. Däremot uppnåddes aldrig fixlösning i svår mätmiljö. De statiska mätningarna visade att den bra miljön resulterade i en RMS på 0,301 meter i plan och 0,335 meter i höjd. Resultatet för alla mätningar i medelsvår miljö resulterade i en RMS på 0,420 m i plan och 0,337 m i höjd medan den för svår miljö resulterade i RMS 10,322 m i plan och RMS 20,784 m i höjd. Detaljmätningen med minst avvikelse resulterade i en standardavvikelse i plan på 0,382 m och i höjd 0,616 m. Detaljmätningen med störst standardavvikelse resulterade i plan 8,917 m och i höjd 6,041 m. Detaljmätningarna visade att precisionen varierade beroende på miljön med störst lägesosäkerhet i skog. Den genomsnittliga konvergenstiden för mätningarna som uppnådde fixlösning resulterade i ca 1 timme och 24 minuter vid statisk mätning. Framtida studier rekommenderas när fas 2 av tjänsten initieras och faskorrektioner samt atmosfäriska korrektioner blir tillgängliga. / This work has examined Galileo HAS (High Accuracy Service), a satellite message correction service developed by the European Union Agency for the Space Programme (EUSPA). The service aims to provide positioning with decimeter precision and serves as an enhancement to existing global free services. Galileo HAS will not compete with professional paid services, as these offer significantly higher precision down to the centimeter level. Galileo HAS is implemented in two service levels and three phases. Phase 1 was launched on January 24, 2023, which includes clock, orbit, and code corrections but not phase corrections. In phase 1, the service is offered with a relaxed accuracy of < 2 dm in horizontal and < 4 dm in vertical, meaning that measurements are expected to meet the requirements to some extent. The future and final phase, phase 2, will offer the promised accuracies of phase 1 when phase corrections are added. The study evaluated the measurement quality with HAS corrections using the Arrow Gold + receiver and an iPad as the handheld device. The applications EOS Tools PRO and ArcGIS Field Maps were used to perform and monitor the measurements in real-time. Measurements were carried out in three different environments: good, moderate, and difficult environments. Static and semi-kinematic “detail” measurements were performed in each measurement environment. A known point in each environment was used for the static measurement. Static measurement was conducted for 2 hours a total of 4 times. Twelve details with a low probability of being disturbed during the work were selected for the semi-kinematic measurements. The measurement was performed by collecting five 1-second measurements and creating an average point from these in ArcGIS Field Maps. Each detail was measured 4 times for the calculation of the spread. The results showed that in static measurement, a fixed solution was achieved, which in this case means a measurement quality under 1 dm according to the instrument, in all good environments and in one case in the moderate environment. However, a fixed solution was never achieved in the difficult environment. The static measurements showed that the good environment resulted in an RMS of 0.301 m in horizontal and 0.335 m in vertical. The result for all measurements in a moderate environment resulted in an RMS of 0.420 m in horizontal and 0.337 m in vertical, while the difficult environment resulted in RMS of 10.322 m in horizontal and 20.784 m in vertical. The semi-kinematic measurement with the least deviation resulted in a standard deviation in horizontal of 0.382 m and in vertical 0.616 m. The semi-kinematic with the greatest standard deviation resulted in horizontal 8.917 m and in vertical 6.041 m. The semi-kinematic measurements showed that the precision varied depending on the environment, with the greatest positional uncertainty in the forest. The average convergence time for measurements that achieved a fixed solution resulted in approximately 1 hour and 24 minutes in static measurement. Future studies are recommended when phase 2 of the service is initiated and phase corrections as well as atmospheric corrections become available.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kau-100576
Date January 2024
CreatorsAndreasson, Sebastian, Edlund, Maria
PublisherKarlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013)
Source SetsDiVA Archive at Upsalla University
LanguageSwedish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.003 seconds