The primary objective of the dissertation research is to establish the seismic demands of precast concrete floor diaphragms designed with an emerging design methodology. To accomplish this, three-dimensional (3D) finite element (FE) models of diaphragm-sensitive precast concrete structures have been developed by extending two-dimensional (2D) diaphragm model developed previously for nonlinear static "pushover" analyses. Using these models, diaphragm seismic demands under expected hazard are evaluated through the nonlinear transient dynamic analyses (NLTDA).The research work is composed of four major parts:(1) Developing 3D NLTDA analytical model for diaphragm-sensitive precast concrete structures: The 3D structure model is extended from a 2D FE diaphragm model developed by a previous researcher. This process involves properly handling comparability conditions in 3D, incorporating proper hysteresis behavior for the diaphragm reinforcement, and developing appropriate lateral force resisting system (LFRS) models. A sensitivity analysis is performed for 3D NLTDA modeling to assist in creating an appropriate model.(2) Application of the model in integrated analysis-driven physical testing: These experiments occurred at Lehigh University (LU) with project collaborators. The loading in these tests were controlled by NLTDA of the 3D analytical model. The tests were used to examine the seismic response of key joints (critical flexure and shear joints) in the diaphragm under realistic demands and to further calibrate the analytical model.(3) Analytical modeling in support of shake table testing: The shake table test was performed at University of California San Diego (UCSD). The test involved a half scale three-story diaphragm-sensitive precast concrete structure. NLTDA using the 3D analytical model is used to assist in design and performance prediction of the test specimen. The test results are being used to calibrate/verify the analytical model.(4) Calibrating design factors for the emerging diaphragm design methodology: In the last research step, the 3D analytical model is used to calibrate trial design factors for the emerging diaphragm design methodology. These factors are established based on a parametric study of NLDTA at different seismic hazard levels using simple structure configurations. These factors will be evaluated on models of realistic structures to determine design factors for the final design procedure.
Identifer | oai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/195277 |
Date | January 2010 |
Creators | Zhang, Dichuan |
Contributors | Fleischman, Robert B., Frantziskonis, George, Restrepo, Jose, Naito, Clay J. |
Publisher | The University of Arizona. |
Source Sets | University of Arizona |
Language | English |
Detected Language | English |
Type | text, Electronic Dissertation |
Rights | Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. |
Page generated in 0.0019 seconds