Return to search

First principles-based atomistic modeling of the structure and nature of amorphous Au-Si alloys and their application to Si nanowire synthesis

A great deal of attention has been paid to semiconductor nanowires due to their compatibility of conventional silicon-based technology. Metal-catalytic vapor-liquidsolid (VLS) and various solution-based techniques have widely been used to synthesize silicon/germanium (Si/Ge) nanowires. It is well characterized that the crystallographic orientations, diameter sizes, and surface morphologies of semiconductor nanowires can be controlled by varying process conditions and metal catalysts. Earlier experimental and theoretical studies have identified mechanism underlying metal catalyzed Si/Ge nanowire growth, involving Si/Ge diffusion into a metal catalyst, eutectic Si/Ge-catalyst alloy formation, and Si/Ge precipitation at the catalyst-nanowire interface. However, little is known about the atomic-level details of the structure, energetics and dynamics of amorphous metal alloys such as gold-silicon (Au-Si) and gold-germanium (Au-Ge) despite their importance for well controlled synthesis of Si/Ge nanowires, which is essential for the success of Si/Ge nanowires-based applications. Experiments provide many clues to the fundamental aspects of the behavior and properties of metal alloys, but their interpretations often remain controversial due largely to difficulties in direct characterization. While current experimental techniques are still limited to providing complementary atomic-level, real space information, first principles based atomistic modeling has emerged as a powerful means to address the structure, function and properties of amorphous metallic alloys. This thesis work has focused on developing a detailed understanding of the atomic structure, energetics, and oxidation of Au-Si alloys, as well as molecular mechanisms underlying Au-catalyzed Si nanowire growth. In addition, the surface reconstruction and chemistry of Si nanowires has been examined, with comparisons to planar Si surfaces. In this dissertation, based on first principles atomistic simulations, we present: 1) the atomic structure, energetics, and chemical ordering of amorphous Au-Si alloys with varying Au:Si composition ratios; 2) the behavior of boron (B) in the Au-Si alloy, such as diffusion and agglomeration, and the effect of B addition on the atomic distribution of Si and Au, with implications for in-situ doping of Si nanowires; 3) the origin and structural ordering of Si surface segregation in the Au-Si alloy, providing important insights into the nucleation and early-stage growth of Si nanowires; 4) the interfacial interaction between the Au-Si alloy and various facets of crystalline Si, such as (111), (211), (110), (110), which explains well the underlying reasons for the growth direction of Si nanowires; 5) the oxidation of the Au-Si alloy; and 6) the surface reconstruction and chemistry of Si nanowires with comparisons to planar Si surfaces. Outcomes from the thesis work contribute to: clarifying the atomic structure, energetics and chemical ordering of amorphous bulk Au-Si alloys, as well as their surfaces and interfaces; better understanding molecular mechanisms underlying the Aucatalyzed synthesis of Si nanowires; and identifying the surface reconstruction and chemistry of Si nanowires. The improved understanding can provide invaluable guidance on the rational design and fabrication of Si nanowire-based future electronic, chemical, and biological devices. This thesis work also offers a theoretical platform for studying metal alloy systems with various applications. / text

Identiferoai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/18244
Date09 October 2012
CreatorsLee, Soohwan
Source SetsUniversity of Texas
LanguageEnglish
Detected LanguageEnglish
Formatelectronic
RightsCopyright is held by the author. Presentation of this material on the Libraries' web site by University Libraries, The University of Texas at Austin was made possible under a limited license grant from the author who has retained all copyrights in the works.

Page generated in 0.0017 seconds