Return to search

Modelos de dispers?o para extremos de precipita??o. Estudo de caso: o nordeste do Brasil

Submitted by Automa??o e Estat?stica (sst@bczm.ufrn.br) on 2016-01-15T14:36:00Z
No. of bitstreams: 1
WashingtonLuizFelixCorreiaFilho_TESE.pdf: 1284178 bytes, checksum: 828e65ac066df616cd79dbeb9443edfe (MD5) / Approved for entry into archive by Elisangela Moura (lilaalves@gmail.com) on 2016-01-25T13:43:02Z (GMT) No. of bitstreams: 1
WashingtonLuizFelixCorreiaFilho_TESE.pdf: 1284178 bytes, checksum: 828e65ac066df616cd79dbeb9443edfe (MD5) / Made available in DSpace on 2016-01-25T13:43:02Z (GMT). No. of bitstreams: 1
WashingtonLuizFelixCorreiaFilho_TESE.pdf: 1284178 bytes, checksum: 828e65ac066df616cd79dbeb9443edfe (MD5)
Previous issue date: 2014-03-27 / Nesta tese foram utilizados tr?s diferentes modelos de regress?o, os Modelos Lineares Generalizados via regress?o log?stica e de Poisson e os Modelos Vetoriais Lineares Generalizados via distribui??o generalizada de valores extremos (MVLG-GEV) com o objetivo de detectar os extremos de precipita??o no Nordeste do Brasil. Inicialmente aplicaram-se os modelos de regress?o log?stica e de Poisson para identificar as intera??es entre os extremos de precipita??o e as demais vari?veis a partir das raz?es de chances e de riscos relativos. Constatou-se que a vari?vel indicadora da ocorr?ncia de extremos de precipita??o ? a radia??o de onda longa, verificada nas regi?es leste, norte e semi?rido do NEB, e a umidade relativa foi verificada no sul do NEB, em ambos os modelos. Os resultados apresentados pelos modelos de regress?o log?stica e de Poisson mostram evid?ncias de que estes extremos de precipita??o s?o impulsionados pela Oscila??o Madden-Julian, que ao interagir com os outros sistemas meteorol?gicos locais, regionais e grande escala podem ocasionar a ocorr?ncia destes extremos. O terceiro modelo, MVLG-GEV, avaliou os extremos a partir dos m?ximos anuais de precipita??o de forma m?ltipla (a partir de um conjunto de vari?veis) e constatou-se que as vari?veis que subsidiaram a ocorr?ncia dos extremos de precipita??o foram: as componentes zonal e meridional do vento, evapora??o e TSM (Atl?ntico e Pac?fico). Este artigo mostra evid?ncias de que a variabilidade da TSM vistas no Atl?ntico como no Pac?fico (El Ni?o-Oscila??o Sul) interfera na variabilidade interanual da precipita??o, modificando o padr?o de circula??o atmosf?rica na regi?o, resultando na intensifica??o ou inibi??o da ocorr?ncia dos extremos de precipita??o. Os coeficientes de regress?o log?stica, de Poisson e de MVLG-GEV demonstraram signific?ncia estat?stica, inferiores a 5%. Em rela??o aos n?veis de retorno para os pr?ximos 30 anos pelos MVLG-GEV, o menor n?vel foi de 91,62mm no sul da Bahia, enquanto o maior foi de 185,72mm no norte do Cear?. / In this thesis used four different methods in order
to diagnose the precipitation extremes on
Northeastern Brazil (NEB): Generalized Linear Model
s via logistic regression and Poisson,
extreme value theory analysis via generalized extre
me value (GEV) and generalized Pareto
(GPD) distributions and Vectorial Generalized Linea
r Models via GEV (MVLG GEV). The
logistic regression and Poisson models were used to
identify the interactions between the
precipitation extremes and other variables based on
the odds ratios and relative risks. It was
found that the outgoing longwave radiation was the
indicator variable for the occurrence of
extreme precipitation on eastern, northern and semi
arid NEB, and the relative humidity was
verified on southern NEB. The GEV and GPD distribut
ions (based on the 95th percentile)
showed that the location and scale parameters were
presented the maximum on the eastern
and northern coast NEB, the GEV verified a maximum
core on western of Pernambuco
influenced by weather systems and topography. The
GEV and GPD shape parameter, for
most regions the data fitted by Weibull negative an
d Beta distributions
(?
<
0)
, respectively.
The levels and return periods of GEV (GPD) on north
ern Maranh?o (centerrn of Bahia) may
occur at least an extreme precipitation event excee
ding over of 160.9 mm /day (192.3 mm /
day) on next 30 years. The MVLG GEV model found tha
t the zonal and meridional wind
components, evaporation and Atlantic and Pacific se
a surface temperature boost the
precipitation extremes. The GEV parameters show the
following results: a) location (

), the
highest value was 88.26 ? 6.42 mm on northern Maran
h?o; b) scale (
?
), most regions showed
positive values, except on southern of Maranh?o; an
d c) shape (
?
), most of the selected
regions were adjusted by the Weibull negative distr
ibution (
?
<
0
). The southern Maranh?o
and southern Bahia have greater accuracy. The level
period, it was estimated that the centern
of Bahia may occur at least an extreme precipitatio
n event equal to or exceeding over 571.2
mm/day on next 30 years.

Identiferoai:union.ndltd.org:IBICT/oai:repositorio.ufrn.br:123456789/19656
Date27 March 2014
CreatorsCorreia Filho, Washington Luiz F?lix
Contributors77231295720, http://lattes.cnpq.br/5291232352923880, Mendes, David, 43298990272, http://lattes.cnpq.br/4411895644401494, Lima, Kellen Carla, 67048358220, http://lattes.cnpq.br/4524628383146981, Rodr?guez, Francisco Javier Sigr?, Vieira, Afr?nio M?rcio Corr?a, 68050615634, http://lattes.cnpq.br/2859528672308405, Spyrides, Maria Helena Constantino, Lucio, Paulo S?rgio
PublisherUniversidade Federal do Rio Grande do Norte, PROGRAMA DE P?S-GRADUA??O EM CI?NCIAS CLIM?TICAS, UFRN, Brasil
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Sourcereponame:Repositório Institucional da UFRN, instname:Universidade Federal do Rio Grande do Norte, instacron:UFRN
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0017 seconds