We test the controversial ideas about the role of corridors in fragmented animal habitats. Using simulation studies we analyze how fragmentation affects a simple prey-predator system and how the introduction of openings that connect the habitats changes the situation. Our individual based model consists of 3 levels: renewable prey food, as well as prey and predators that both have a simple economy. We find, in line with intuition, that the fragmentation of a habitat has a strong negative effect especially on the predator population. Connecting the fragmented habitats facilitates predator (and hence prey) survival, but also leads to an important counterintuitive effect: in the presence of a high quality predator, connected fragmented systems fare better in terms of coexistence than do unfragmented systems. Using a frequency domain analysis we explain how corridors between sub-habitats serve as "wave breakers" in the population flow, thus preventing deadly density waves to occur.
Identifer | oai:union.ndltd.org:ETSU/oai:dc.etsu.edu:etsu-works-17697 |
Date | 11 July 2011 |
Creators | Kampis, George, Karsai, Istvan |
Publisher | Digital Commons @ East Tennessee State University |
Source Sets | East Tennessee State University |
Detected Language | English |
Type | text |
Source | ETSU Faculty Works |
Page generated in 0.0024 seconds