Made available in DSpace on 2014-12-17T14:55:23Z (GMT). No. of bitstreams: 1
RonaldoAM.pdf: 2082162 bytes, checksum: 2dd11d30b856b23cf429317a1e68bfbe (MD5)
Previous issue date: 2006-06-12 / In this dissertation new models of propagation path loss predictions are proposed by from techniques of optimization recent and measures of power levels for the urban and suburban areas of Natal, city of Brazilian northeast.
These new proposed models are: (i) a statistical model that was implemented based in the addition of second-order statistics for the power and the altimetry of the relief in model of linear losses; (ii) a artificial neural networks model used the training of the algorithm backpropagation, in order to get the equation of propagation losses; (iii) a model based on the technique of the random walker, that considers the random of the absorption and the chaos of the environment and than its unknown parameters for the equation of propagation losses are determined through of a neural network. The digitalization of the relief for the urban and suburban areas of Natal were carried through of the development of specific computational programs and had been used available maps in the Statistics and Geography Brazilian Institute. The validations of the proposed propagation models had been carried through comparisons with measures and propagation classic models, and numerical good agreements were observed. These new considered models could be applied to any urban and suburban scenes with characteristic similar architectural to the city of Natal / Nesta tese novos modelos de predi??o de perda de percurso de propaga??o s?o propostos a partir de t?cnicas de otimiza??es recentes e de medi??es de n?veis de pot?ncias obtidas para as ?reas urbana e suburbana de Natal, cidade do Nordeste Brasileiro. Estes novos modelos s?o: (i) um modelo estat?stico que foi implementado baseado na adi??o de estat?sticas de 2a. ordem para a pot?ncia e a altimetria do relevo ao modelo de perdas lineares; (ii) um modelo com redes neurais artificiais que usou o treinamento do algoritmo backpropagation, a fim de obter a equa??o de perdas de propaga??o; (iii) um modelo baseado na t?cnica dos trajetos aleat?rios, que considera a aleatoriedade da absor??o e do caos do meio ambiente e que seus par?metros desconhecidos para a equa??o de perdas de propaga??o s?o determinados atrav?s de uma rede neural. A digitaliza??o do relevo das ?reas urbanas e suburbanas de Natal foi realizada atrav?s do desenvolvimento de programas computacionais espec?ficos e foram usados os mapas existentes no Instituto Brasileiro de Geografia e Estat?stica. As valida??es dos modelos propostos de predi??o de perda de propaga??o foram realizadas atrav?s de compara??es com medidas e modelos cl?ssicos de propaga??o, obtendo-se boas concord?ncias num?ricas. Estes novos modelos poder?o ser aplicados a qualquer cen?rio urbano e suburbano com caracter?sticas arquitet?nicas semelhantes ? cidade de Natal
Identifer | oai:union.ndltd.org:IBICT/oai:repositorio.ufrn.br:123456789/15260 |
Date | 12 June 2006 |
Creators | Martins, Ronaldo de Andrade |
Contributors | CPF:09064087415, http://lattes.cnpq.br/1853488415531363, Cavalcante, Gerv?sio Prot?sio dos Santos, CPF:02879891272, http://lattes.cnpq.br/2265948982068382, Gomes Neto, Alfr?do, CPF:33312079420, http://lattes.cnpq.br/1403715441701958, Campos, Ant?nio Luiz Pereira de Siqueira, CPF:79090095420, http://lattes.cnpq.br/1982228057731254, D'assun??o, Adaildo Gomes, Mendon?a, La?rcio Martins de |
Publisher | Universidade Federal do Rio Grande do Norte, Programa de P?s-Gradua??o em Engenharia El?trica, UFRN, BR, Automa??o e Sistemas; Engenharia de Computa??o; Telecomunica??es |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Format | application/pdf |
Source | reponame:Repositório Institucional da UFRN, instname:Universidade Federal do Rio Grande do Norte, instacron:UFRN |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0031 seconds