Return to search

Machine Learning for Predictive Maintenance in Aviation / Apprentissage Automatique pour la Maintenance Predictive dans le Domaine de l’Aviation

L'augmentation des données disponibles dans presque tous les domaines soulève la nécessité d'utiliser des algorithmes pour l'analyse automatisée des données. Cette nécessité est mise en évidence dans la maintenance prédictive, où l'objectif est de prédire les pannes des systèmes en observant continuellement leur état, afin de planifier les actions de maintenance à l'avance. Ces observations sont générées par des systèmes de surveillance habituellement sous la forme de séries temporelles et de journaux d'événements et couvrent la durée de vie des composants correspondants. Le principal défi de la maintenance prédictive est l'analyse de l'historique d'observation afin de développer des modèles prédictifs.Dans ce sens, l'apprentissage automatique est devenu omniprésent puisqu'il fournit les moyens d'extraire les connaissances d'une grande variété de sources de données avec une intervention humaine minimale. L'objectif de cette thèse est d'étudier et de résoudre les problèmes dans l'aviation liés à la prévision des pannes de composants à bord. La quantité de données liées à l'exploitation des avions est énorme et, par conséquent, l'évolutivité est une condition essentielle dans chaque approche proposée.Cette thèse est divisée en trois parties qui correspondent aux différentes sources de données que nous avons rencontrées au cours de notre travail. Dans la première partie, nous avons ciblé le problème de la prédiction des pannes des systèmes, compte tenu de l'historique des Post Flight Reports. Nous avons proposé une approche statistique basée sur la régression précédée d'une formulation méticuleuse et d'un prétraitement / transformation de données. Notre méthode estime le risque d'échec avec une solution évolutive, déployée dans un environnement de cluster en apprentissage et en déploiement. À notre connaissance, il n'y a pas de méthode disponible pour résoudre ce problème jusqu'au moment où cette thèse a été écrite.La deuxième partie consiste à analyser les données du livre de bord, qui consistent en un texte décrivant les problèmes d'avions et les actions de maintenance correspondantes. Le livre de bord contient des informations qui ne sont pas présentes dans les Post Flight Reports bien qu'elles soient essentielles dans plusieurs applications, comme la prédiction de l'échec. Cependant, le journal de bord contient du texte écrit par des humains, il contient beaucoup de bruit qui doit être supprimé afin d'extraire les informations utiles. Nous avons abordé ce problème en proposant une approche basée sur des représentations vectorielles de mots. Notre approche exploite des similitudes sémantiques, apprises par des neural networks qui ont généré les représentations vectorielles, afin d'identifier et de corriger les fautes d'orthographe et les abréviations. Enfin, des mots-clés importants sont extraits à l'aide du Part of Speech Tagging.Dans la troisième partie, nous avons abordé le problème de l'évaluation de l'état des composants à bord en utilisant les mesures des capteurs. Dans les cas considérés, l'état du composant est évalué par l'ampleur de la fluctuation du capteur et une tendance à l'augmentation monotone. Dans notre approche, nous avons formulé un problème de décomposition des séries temporelles afin de séparer les fluctuations de la tendance en résolvant un problème convexe. Pour quantifier l'état du composant, nous calculons à l'aide de Gaussian Mixture Models une fonction de risque qui mesure l'écart du capteur par rapport à son comportement normal. / The increase of available data in almost every domain raises the necessity of employing algorithms for automated data analysis. This necessity is highlighted in predictive maintenance, where the ultimate objective is to predict failures of hardware components by continuously observing their status, in order to plan maintenance actions well in advance. These observations are generated by monitoring systems usually in the form of time series and event logs and cover the lifespan of the corresponding components. Analyzing this history of observation in order to develop predictive models is the main challenge of data driven predictive maintenance.Towards this direction, Machine Learning has become ubiquitous since it provides the means of extracting knowledge from a variety of data sources with the minimum human intervention. The goal of this dissertation is to study and address challenging problems in aviation related to predicting failures of components on-board. The amount of data related to the operation of aircraft is enormous and therefore, scalability is a key requirement in every proposed approach.This dissertation is divided in three main parts that correspond to the different data sources that we encountered during our work. In the first part, we targeted the problem of predicting system failures, given the history of Post Flight Reports. We proposed a regression-based approach preceded by a meticulous formulation and data pre-processing/transformation. Our method approximates the risk of failure with a scalable solution, deployed in a cluster environment both in training and testing. To our knowledge, there is no available method for tackling this problem until the time this thesis was written.The second part consists analyzing logbook data, which consist of text describing aircraft issues and the corresponding maintenance actions and it is written by maintenance engineers. The logbook contains information that is not reflected in the post-flight reports and it is very essential in several applications, including failure prediction. However, since the logbook contains text written by humans, it contains a lot of noise that needs to be removed in order to extract useful information. We tackled this problem by proposing an approach based on vector representations of words (or word embeddings). Our approach exploits semantic similarities of words, learned by neural networks that generated the vector representations, in order to identify and correct spelling mistakes and abbreviations. Finally, important keywords are extracted using Part of Speech Tagging.In the third part, we tackled the problem of assessing the health of components on-board using sensor measurements. In the cases under consideration, the condition of the component is assessed by the magnitude of the sensor's fluctuation and a monotonically increasing trend. In our approach, we formulated a time series decomposition problem in order to separate the fluctuation from the trend by solving a convex program. To quantify the condition of the component, we compute a risk function which measures the sensor's deviation from it's normal behavior, which is learned using Gaussian Mixture Models.

Identiferoai:union.ndltd.org:theses.fr/2017SACLX093
Date21 November 2017
CreatorsKorvesis, Panagiotis
ContributorsUniversité Paris-Saclay (ComUE), Vazirgiannis, Michalis
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0027 seconds