My master's thesis on the topic of "Design of exercises for data mining - Classification and prediction" deals with the most frequently used methods classification and prediction. There are association rules, Bayesian classification, genetic algorithms, the nearest method neighbor, neural network and decision trees on the classification. There are linear and non-linear prediction on the prediction. This work also contains a summary of detail the issue of decision trees and a detailed algorithm for creating the decision tree, including development of individual diagrams. The proposed algorithm for creating the decision tree is tested through two tests of data dowloaded from Internet. The results are mutually compared and described differences between the two implementations. The work is written in a way that would provide the reader with a notion of the individual methods and techniques for data mining, their advantages, disadvantages and some of the issues that directly relate to this topic.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:218190 |
Date | January 2009 |
Creators | Martiník, Jan |
Contributors | Malý, Jan, Burget, Radim |
Publisher | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0022 seconds