Return to search

Spent Nuclear Fuel under Repository Conditions : Update and Expansion of Database and Development of Machine Learning Models / Utbränt kärnbränsle under djupförvarsbetingelser : Uppdatering och expansion av databas samt utveckling av maskininlärningsmodeller

Förbrukat kärnbränsle är mycket radioaktivt och behöver därför lagras i djupa geologiska förvar i tusentals år innan det säkert kan återföras till naturen. På grund av de långa lagringsperioderna görs säkerhetsanalyser av de djupa geologiska förvaren. Under säkerthetsanalyserna görs upplösningsexperiment på förbrukat kärnsbränsle för att utvärdera konsekvenserna av att grundvatten läcker in i bränslet vid barriärbrott. Dessa experiment är både dyra och tidskrävande, varför beräkningsmodeller som kan förutsäga förburkat kärnbränsles upplösningsbeteende är önskvärda. Denna avhandling fokuserar på att samla in tillgängliga experimentella data från upplösningsexperiment för att uppdatera och utöka en databas. Med hjälp av databasen har upplösningsbeteendet för varje radionuklid utvärderats och jämförts med tidigare kunskap från befintlig litteratur. Även om det var svårt att vara avgörande om beteendet hos element där en begränsad mängd data fanns tillgänglig, motsvarar de upplösningsbeteenden som hittats för olika radionuklider i denna avhandling inte bara tidigare studier utan ger också ett verktyg för att hantera och jämföra förbrukat kärnbränsles upplösningsdata från olika utgångsmaterial, bestrålningshistorik och betingeleser under upplösning. Dessutom gjorde sammanställningen av en så stor mängd experimentella data det möjligt att förstå var framtida experimentella ansträngningar bör fokuseras, exempelvis finns det en brist på data under reducerande förhållanden. Dessutom utvecklades och kördes maskininlärningsmodeller med hjälp av Artificial Neural Network (ANN), Random Forest (RF) och XGBoost-algoritmer med hjälp av databasen, varefter prestandan utvärderades. Prestanda för varje algoritm jämfördes för att få en förståelse för vilken modell som presterade bäst, men också för att förstå om dessa typer av modeller är lämpliga verktyg för att förutspå förbrukat kärnbränsles upplösningsbeteende. Den bäst presterande modellen, med träning och test R2 resultat nära 1, var XGBoost-modellen. Även om XGBoost hade en hög prestanda, drogs slutsatsen att mer experimentell data behövs innan maskininlärningsmodeller kan användas i verkliga situationer. / Spent nuclear fuel (SNF) is highly radioactive and therefore needs to be stored in deep geological repositories for thousands of years before it can be safely returned to nature. Due to the long storage times, performance assessments (PA) of the deep geological repositories are made. During PA dissolution experiments of SNF are made to evaluate the consequences of groundwater leaking into the fuel canister in case of barrier failure. These experiments are both expensive and time consuming, which is why computational models that can predict SNF dissolution behaviour are desirable.  This thesis focuses on gathering available experimental data of dissolution experiments to update and expand a database. Using the database, the dissolution behaviour of each radionuclide (RN) has been evaluated and compared to previous knowledge from existing literature. While it was difficult to be conclusive on the behaviour of elements where a limited amount of data was available, the dissolution behaviours found of different radionuclides in this thesis not only correspond to previous studies but also provide a tool to manage and compare SNF leaching data from different starting materials, irradiation history and leaching conditions. Moreover, the compilation of such a large amount of experimental data made it possible to understand where future experimental efforts should be focused, i.e. there is a lack of data during reducing conditions. In addition, machine learning models using Artificial Neural Network (ANN), Random Forest (RF) and XGBoost algorithms were developed and run using the database after which the performances were evaluated. The performances of each algorithm were compared to get an understanding of which model performed best, but also to understand whether these kinds of models are suitable tools for SNF dissolution behaviour predictions. The best performing model, with training and test R2 scores close to 1, was the XGBoost model. Although XGBoost, had a high performance, it was concluded that more experimental data is needed before machine learning models can be used in real situations.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-316622
Date January 2022
CreatorsAbada, Maria
PublisherKTH, Kemi
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-CBH-GRU ; 2022:244

Page generated in 0.003 seconds