Return to search

PROACTIVE VERSUS REACTIVE CONTROL STRATEGIES DIFFERENTIALLY MEDIATE ALCOHOL SEEKING IN WISTARS AND P RATS

<p>Problematic alcohol consumption develops concurrently with deficits in decision-making.  These deficits may be due to alterations in dorsal medial prefrontal cortex (dmPFC) neural activity, as it is essential for the evaluation and implementation of behavioral strategies. In this study, we hypothesized that differences in cognitive control would be evident between Wistars and alcohol-preferring P rats. Cognitive control can be split into proactive and reactive components. Proactive control maintains goal-directed behavior independent of a stimulus whereas reactive control elicits goal-directed behavior at the time of a stimulus. Specifically, it was hypothesized that Wistars would show proactive control over alcohol-seeking whereas P rats </p>
<p>would show reactive control over alcohol-seeking. Proactive control in our rodent model is defined as responding to distal task cues whereas reactive control is responding to proximal cues. This was tested in rodents performing a 2-way Cued Access Protocol (2CAP) that facilitates measurements of alcohol seeking and drinking. Congruent sessions were the typical, default 2CAP sessions that consisted of the CS+ being on the same side as alcohol access. These were compared with incongruent sessions where alcohol access was opposite of the CS+. Wistars exhibited an increase in incorrect approaches during the incongruent sessions, which was not detectable in P rats. A trial-by-trial analysis indicated that the increases in incorrect responses </p>
<p>was explained by Wistars utilizing the previously learned task-rule, whereas the P rats did not. </p>
<p>This motivated the subsequent hypothesis that neural activity patterns corresponding to proactive control would be observable in Wistars but not P rats. Principal Component Analysis indicated that neural ensembles in the dmPFC of Wistars exhibited decreased activity to the cue light in incongruent sessions whereas P rat ensembles displayed increased activity at timepoints associated with the onset and end of alcohol access. Overall, it was observed that P rats showed the most differences in neural activity at times relevant for alcohol delivery; specifically, when the sipper came into the apparatus and left. Conversely, Wistars showed differences prior to approach as evidenced by both differences in cue-related activity as well as differences in </p>
<p>spatial-strategies. Together, these results support our hypothesis that Wistars are more likely to engage proactive cognitive control strategies whereas P rats are more likely to engage reactive cognitive control strategies. Although P rats were bred to prefer alcohol, differences in cognitive control phenotypes may have concomitantly occurred that are of clinical relevance.</p>

  1. 10.25394/pgs.22630738.v1
Identiferoai:union.ndltd.org:purdue.edu/oai:figshare.com:article/22630738
Date18 May 2023
CreatorsMitchell David Morningstar (8098238), Christopher C. Lapish (14822623)
Source SetsPurdue University
Detected LanguageEnglish
TypeText, Thesis
RightsCC BY 4.0
Relationhttps://figshare.com/articles/thesis/PROACTIVE_VERSUS_REACTIVE_CONTROL_STRATEGIES_DIFFERENTIALLY_MEDIATE_ALCOHOL_SEEKING_IN_WISTARS_AND_P_RATS/22630738

Page generated in 0.0505 seconds