[pt] Nesta dissertação é proposto um modelo híbrido para
previsão de carga de curtíssimo prazo, combinando
amortecimento exponencial simples e redes neurais
artificiais do topo feed-forward. O modelo fornece
previsões pontuais e limites superiores e inferiores para um
horizonte de quinze dias. Estes limites formam um intervalo
ao qual pode ser associado um nível de confiança empírico,
estimado através de um teste fora da amostra. O desempenho
do modelo é avaliado ao longo de uma simulação realizada
com dados reais de duas concessionárias de energia elétrica
brasileiras. / [en] This thesis presents an hibrid short term load forecasting
model that mixes simple exponential smoothing with feed-
forward neural networks. The model gives point predictions
with upper and lower limits for 15-day-ahead horizon. These
limits yields an interval with associated empirical
confidence level, estimated by an out of sample test. The
model's performance is evaluated through a simulation with
real data obtained from two Brazilian utilities. / [es] En esta disertación se propone un modelo híbrido para
previsión de carga de cortísimo plazo, combinando
amortecimiento exponencial simple y redes neurales
artificiales tipo feed-forward. EL modelo nos da las
previsiones puntuales y los límites superiores e inferiores
para un horizonte de quince días. Estos límites forman un
intervalo al cual se le puede asociar un nível de confianza
empírico, estimado a través de un test out of sample. EL
desempeño del modelo se evalúa utilizando datos reales de
dos concesionarias de energía eléctrica brasileras.
Identifer | oai:union.ndltd.org:puc-rio.br/oai:MAXWELL.puc-rio.br:1738 |
Date | 19 July 2001 |
Creators | GUILHERME MARTINS RIZZO |
Contributors | REINALDO CASTRO SOUZA |
Publisher | MAXWELL |
Source Sets | PUC Rio |
Language | Portuguese |
Detected Language | Portuguese |
Type | TEXTO |
Page generated in 0.0022 seconds