In this thesis a heuristic method for factoring semiprimes by multiagent depth-limited search of PG2N graphs is presented. An analysis of PG2N graph connectivity is used to generate heuristics for multiagent search. Further analysis is presented including the requirements on choosing prime numbers to generate 'hard' semiprimes; the lack of connectivity in PG1N graphs; the counts of spanning trees in PG2N graphs; the upper bound of a PG2N graph diameter and a conjecture on the frequency distribution of prime numbers on Hamming distance. We further demonstrated the feasibility of the HD2 breadth first search of PG2N graphs for factoring small semiprimes. We presented the performance of different multiagent search heuristics in PG2N graphs showing that the heuristic of most connected seedpick outperforms least connected or random connected seedpick heuristics on small PG2N graphs of size N
Identifer | oai:union.ndltd.org:pdx.edu/oai:pdxscholar.library.pdx.edu:open_access_etds-1218 |
Date | 01 January 2011 |
Creators | Wilson, Keith Eirik |
Publisher | PDXScholar |
Source Sets | Portland State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Dissertations and Theses |
Page generated in 0.0019 seconds