Já é bem estabelecido na geometria diferencial o uso de fibrados principais com grupo de estru- tura para a definição e o estudo de algumas estruturas geométricas na base do fibrado. O uso de fibrados principais com grupoide de estrutura na definição de estruturas geométricas sobre varieda- des não tem sido muito explorada. O único exemplo do uso desses fibrados para definir estruturas geométricas foi dado Haefliger. Ele mostrou que folheações regulares sobre uma variedade estão em correspondência com uma classe de fibrados principais com grupoide de estrutura, e usando a classificação de fibrados principais ele obtive a classificação de folheações regulares a menos de homotopia sobre uma variedade aberta. Neste trabalho propomos uma definição a qual generaliza as folheações regulares para produzir uma classe de fibrados vetoriais ancorados e provamos para eles um teorema de classificação no espirito do teorema de Haefliger. Depois aplicamos a teoria desenvolvida aos grupoides com formas multiplicativas e mostramos como a nossa definição per- mite trasladar a geometria guardada na forma multiplicativa para a base do fibrado principal. Em seguida voltamos para o caso de folheações regulares e mostramos que a nossa proposta permite incluir novas estruturas transversais à folheação. / It is well know in differencial geometry the use of principal bundles with structure group to define and study some geometric structures on the base of the bundle. The use of principal bun- dle with a structure groupoid has not been extensively studied yet. The only example using this kind of bundle was provided by Haefliger in his study of regular foliations. Haefliger showed that regular foliations can be identified with some class of principal bundles with structure groupoid, then by using the classifying theorem of principal bundles he arrived to the classification theorem of regular foliations up to homotopy on open manifolds. In this work we will propose a definition that generalizes regular foliations to include anchored vector bundles and, will prove a classification theorem for these structures in the spirit of Haefligers theorem. Then we will apply this theory to groupoids with multiplicative forms and show that our definition permits to transfer the geometry encoded in the multiplicative form to the base of the bundle. Then we will back to the case of regular foliations and show that our proposal allow new transversal structures to the foliation.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-15022019-122220 |
Date | 20 April 2018 |
Creators | Chauca, Genaro Pablo Zamudio |
Contributors | Struchiner, Ivan |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | English |
Type | Tese de Doutorado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0021 seconds