Return to search

Contributions to the Study of the Validity of Huygens' Principle for the Non-self-adjoint Scalar Wave Equation on Petrov Type D Spacetimes

This thesis makes contributions to the solution of Hadamard's problem through an examination of the question of the validity of Huygens'principle for the non-self-adjoint scalar wave equation on a Petrov type D spacetime. The problem is split into five further sub-cases based on the alignment of the Maxwell and Weyl principal spinors of the underlying spacetime. Two of these sub-cases are considered, one of which is proved to be incompatible with Huygens' principle, while for the other, it is shown that Huygens' principle implies that the two principal null congruences of the Weyl tensor are geodesic and shear-free. Furthermore, an unpublished result of McLenaghan regarding symmetric spacetimes of Petrov type D is independently verified. This result suggests the possible existence of counter-examples of the Carminati-McLenaghan conjecture.

Identiferoai:union.ndltd.org:WATERLOO/oai:uwspace.uwaterloo.ca:10012/1116
Date January 2000
CreatorsChu, Kenneth
PublisherUniversity of Waterloo
Source SetsUniversity of Waterloo Electronic Theses Repository
LanguageEnglish
Detected LanguageEnglish
TypeThesis or Dissertation
Formatapplication/pdf, 1128292 bytes, application/pdf
RightsCopyright: 2000, Chu, Kenneth. All rights reserved.

Page generated in 0.002 seconds