Laser based underwater triangulation ranging is sensitive to the environmental conditions and laser beam profile. Also, its ranging quality is greatly affected by the algorithm choices for peak detection and for image processing. By utilizing the merging least-squares approximation for laser image processing, it indeed succeeds in increasing quality of triangulation ranging in water; however, this result was obtained on the use of a laser beam with nearly circular cross-section. Therefore, by using an ellipse-like laser beam cross-section for range finding, we are really interested in understanding the quality of range finding with different peak detection algorithms. Besides, the ellipse orientation of the laser spot projected on the image plane would be various. We are also interested in learning about the relationship between the ellipse orientation and the quality of range finding. In this study, peak detection algorithms are investigated by considering four different laser beam cross-sections which are ircle, horizontal ellipse, oblique ellipse, and vertical ellipse. First, we employ polynomial regression for processing laser image to study the effect of polynomial degree on quality of triangulation ranging. It was found that the linear regression achieves the best ranging quality than others. Then, according to this result, the ranging quality associated with peak detection is evaluated by employing three different algorithms which are the illumination center, twice illumination center and the illumination center with principal component analysis. We found that the ranging quality by using the illumination center with principal component analysis is the best, next is twice illumination center, and last the illumination center. This result indicates that the orientation of elliptical laser beam has an influential effect on the quality of range finding. In addition, the ranging quality difference among peak detection algorithms is significantly reduced by implementing the merging least-squares approximation rlaser image processing. This result illustrates that the merging least-squares approximation does reduce the effect of peak detection algorithm on the quality of range finding.
Identifer | oai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0729104-004330 |
Date | 29 July 2004 |
Creators | Hung, Chia-Chun |
Contributors | Hsin-Hung Chen, Chau-Chang Wang, Tsung-Yi Lin |
Publisher | NSYSU |
Source Sets | NSYSU Electronic Thesis and Dissertation Archive |
Language | Cholon |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0729104-004330 |
Rights | unrestricted, Copyright information available at source archive |
Page generated in 0.0019 seconds