Return to search

A GENERAL FRAMEWORK FOR CUSTOMER CONTENT PRINT QUALITY DEFECT DETECTION AND ANALYSIS

<p>Print quality (PQ) is one of the most significant issues with electrophotographic printers. There are many reasons for PQ issues, such as limitations of the electrophotographic process, faulty printer components, or other failures of the print mechanism. These reasons can produce different PQ issues, like streaks, bands, gray spots, text fading, and color fading defects. It is important to analyze the nature and causes of different print defects to more efficiently repair printers and improve the electrophotographic process. </p>
<p><br></p>
<p>We design a general framework for print quality detection and analysis of customer content. This print quality analysis framework inputs the original digital image saved on the computer and then the scanned image. This framework includes two main modules: image pre-processing, print defects feature vector extraction, and classification. The first module, image pre-processing, includes image registration, color calibration, and region of interest (ROI) extraction. The ROI extraction part is designed to extract four different kinds of ROI from the digital master image. Because different ROIs include different print defects, for example, the symbol ROI includes the text fading defect, and the raster ROI includes the color fading defect. The second module includes different ROI print defects detection and analysis algorithms. We classify different ROI print defects using their feature vector based on their severity. This module proposed four important defects detection methods: uniform color area streak detection, symbol ROI color text fading detection, raster ROI color fading detection using a novel unsupervised clustering method, and raster ROI streak detection. We will introduce the details of these algorithms in this thesis. </p>
<p><br></p>
<p>We will also show two other interesting print quality projects: print margin skew detection and print velocity simulation and estimation. Print margin skew detection proposes an algorithm that uses the Hough Lines Detection algorithm to detect printing margin and skew errors based on factual scanned image verification. In the print velocity simulation and estimation project, we propose a print velocity simulation tool, design a specific print velocity test page, and design a print velocity estimation algorithm using the dynamic time warping algorithm. </p>

  1. 10.25394/pgs.20288589.v1
Identiferoai:union.ndltd.org:purdue.edu/oai:figshare.com:article/20288589
Date11 July 2022
CreatorsRunzhe Zhang (11442742)
Source SetsPurdue University
Detected LanguageEnglish
TypeText, Thesis
RightsCC BY 4.0
Relationhttps://figshare.com/articles/thesis/A_GENERAL_FRAMEWORK_FOR_CUSTOMER_CONTENT_PRINT_QUALITY_DEFECT_DETECTION_AND_ANALYSIS/20288589

Page generated in 0.0033 seconds