L’une des grandes applications de la statistique est la validation et la comparaison de modèles probabilistes au vu des données. Cette branche des statistiques a été développée depuis la formalisation de la fin du 19ième siècle par des pionniers comme Gosset, Pearson et Fisher. Dans le cas particulier de l’approche bayésienne, la solution à la comparaison de modèles est le facteur de Bayes, rapport des vraisemblances marginales, quelque soit le modèle évalué. Cette solution est obtenue par un raisonnement mathématique fondé sur une fonction de coût.Ce facteur de Bayes pose cependant problème et ce pour deux raisons. D’une part, le facteur de Bayes est très peu utilisé du fait d’une forte dépendance à la loi a priori (ou de manière équivalente du fait d’une absence de calibration absolue). Néanmoins la sélection d’une loi a priori a un rôle vital dans la statistique bayésienne et par conséquent l’une des difficultés avec la version traditionnelle de l’approche bayésienne est la discontinuité de l’utilisation des lois a priori impropres car ils ne sont pas justifiées dans la plupart des situations de test. La première partie de cette thèse traite d’un examen général sur les lois a priori non informatives, de leurs caractéristiques et montre la stabilité globale des distributions a posteriori en réévaluant les exemples de [Seaman III 2012]. Le second problème, indépendant, est que le facteur de Bayes est difficile à calculer à l’exception des cas les plus simples (lois conjuguées). Une branche des statistiques computationnelles s’est donc attachée à résoudre ce problème, avec des solutions empruntant à la physique statistique comme la méthode du path sampling de [Gelman 1998] et à la théorie du signal. Les solutions existantes ne sont cependant pas universelles et une réévaluation de ces méthodes suivie du développement de méthodes alternatives constitue une partie de la thèse. Nous considérons donc un nouveau paradigme pour les tests bayésiens d’hypothèses et la comparaison de modèles bayésiens en définissant une alternative à la construction traditionnelle de probabilités a posteriori qu’une hypothèse est vraie ou que les données proviennent d’un modèle spécifique. Cette méthode se fonde sur l’examen des modèles en compétition en tant que composants d’un modèle de mélange. En remplaçant le problème de test original avec une estimation qui se concentre sur le poids de probabilité d’un modèle donné dans un modèle de mélange, nous analysons la sensibilité sur la distribution a posteriori conséquente des poids pour divers modélisation préalables sur les poids et soulignons qu’un intérêt important de l’utilisation de cette perspective est que les lois a priori impropres génériques sont acceptables, tout en ne mettant pas en péril la convergence. Pour cela, les méthodes MCMC comme l’algorithme de Metropolis-Hastings et l’échantillonneur de Gibbs et des approximations de la probabilité par des méthodes empiriques sont utilisées. Une autre caractéristique de cette variante facilement mise en œuvre est que les vitesses de convergence de la partie postérieure de la moyenne du poids et de probabilité a posteriori correspondant sont assez similaires à la solution bayésienne classique / One of the major applications of statistics is the validation and comparing probabilistic models given the data. This branch statistics has been developed since the formalization of the late 19th century by pioneers like Gosset, Pearson and Fisher. In the special case of the Bayesian approach, the comparison solution of models is the Bayes factor, ratio of marginal likelihoods, whatever the estimated model. This solution is obtained by a mathematical reasoning based on a loss function. Despite a frequent use of Bayes factor and its equivalent, the posterior probability of models, by the Bayesian community, it is however problematic in some cases. First, this rule is highly dependent on the prior modeling even with large datasets and as the selection of a prior density has a vital role in Bayesian statistics, one of difficulties with the traditional handling of Bayesian tests is a discontinuity in the use of improper priors since they are not justified in most testing situations. The first part of this thesis deals with a general review on non-informative priors, their features and demonstrating the overall stability of posterior distributions by reassessing examples of [Seaman III 2012].Beside that, Bayes factors are difficult to calculate except in the simplest cases (conjugate distributions). A branch of computational statistics has therefore emerged to resolve this problem with solutions borrowing from statistical physics as the path sampling method of [Gelman 1998] and from signal processing. The existing solutions are not, however, universal and a reassessment of the methods followed by alternative methods is a part of the thesis. We therefore consider a novel paradigm for Bayesian testing of hypotheses and Bayesian model comparison. The idea is to define an alternative to the traditional construction of posterior probabilities that a given hypothesis is true or that the data originates from a specific model which is based on considering the models under comparison as components of a mixture model. By replacing the original testing problem with an estimation version that focus on the probability weight of a given model within a mixture model, we analyze the sensitivity on the resulting posterior distribution of the weights for various prior modelings on the weights and stress that a major appeal in using this novel perspective is that generic improper priors are acceptable, while not putting convergence in jeopardy. MCMC methods like Metropolis-Hastings algorithm and the Gibbs sampler are used. From a computational viewpoint, another feature of this easily implemented alternative to the classical Bayesian solution is that the speeds of convergence of the posterior mean of the weight and of the corresponding posterior probability are quite similar.In the last part of the thesis we construct a reference Bayesian analysis of mixtures of Gaussian distributions by creating a new parameterization centered on the mean and variance of those models itself. This enables us to develop a genuine non-informative prior for Gaussian mixtures with an arbitrary number of components. We demonstrate that the posterior distribution associated with this prior is almost surely proper and provide MCMC implementations that exhibit the expected component exchangeability. The analyses are based on MCMC methods as the Metropolis-within-Gibbs algorithm, adaptive MCMC and the Parallel tempering algorithm. This part of the thesis is followed by the description of R package named Ultimixt which implements a generic reference Bayesian analysis of unidimensional mixtures of Gaussian distributions obtained by a location-scale parameterization of the model. This package can be applied to produce a Bayesian analysis of Gaussian mixtures with an arbitrary number of components, with no need to specify the prior distribution.
Identifer | oai:union.ndltd.org:theses.fr/2016PSLED022 |
Date | 15 March 2016 |
Creators | Kamary, Kaniav |
Contributors | Paris Sciences et Lettres, Robert, Christian P. |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0024 seconds