Let H be the Hawaiian Earring, and let H denote its fundamental group. Assume (Bi) is an inverse system of bouquets of circles whose inverse limit is H. We give an explicit bijection between finite normal covering spaces of H and finite normal covering spaces of Bi. This bijection induces a correspondence between a certain family of inverse sequences of these covering spaces. The correspondence preserves the inverse limit of these sequences, thus offering two methods of constructing the same limit. Finally, we characterize all spaces that can be obtained in this fashion as a particular type of fibrations of H.
Identifer | oai:union.ndltd.org:BGMYU2/oai:scholarsarchive.byu.edu:etd-5323 |
Date | 01 December 2014 |
Creators | Callor, Nickolas Brenten |
Publisher | BYU ScholarsArchive |
Source Sets | Brigham Young University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations |
Rights | http://lib.byu.edu/about/copyright/ |
Page generated in 0.0016 seconds