Return to search

New Semiparametric Methods for Recurrent Events Data

Recurrent events data are rising in all areas of biomedical research. We present a model for recurrent events data with the same link for the intensity and mean functions. Simple interpretations of the covariate effects on both the intensity and mean functions lead to a better understanding of the covariate effects on the recurrent events process. We use partial likelihood and empirical Bayes methods for inference and provide theoretical justifications and as well as relationships between these methods. We also show the asymptotic properties of the empirical Bayes estimators. We illustrate the computational convenience and implementation of our methods with the analysis of a heart transplant study. We also propose an additive regression model and associated empirical Bayes method for the risk of a new event given the history of the recurrent events. Both the cumulative mean and rate functions have closed form expressions for our model. Our inference method for the simiparametric model is based on maximizing a finite dimensional integrated likelihood obtained by integrating over the nonparametric cumulative baseline hazard function. Our method can accommodate time-varying covariates and is easier to implement computationally instead of iterative algorithm based full Bayes methods. The asymptotic properties of our estimates give the large-sample justifications from a frequentist stand point. We apply our method on a study of heart transplant patients to illustrate the computational convenience and other advantages of our method. / A Thesis submitted to the Department of Statistics in partial fulfillment of the requirements for the degree of Doctor of Philosophy. / Spring Semester, 2011. / March 25, 2011. / Additive Intensity Model, Cumulative Mean Function, Intensity Function, Empirical Bayes Methods, Recurrent Events Data / Includes bibliographical references. / Debajyoti Sinha, Professor Directing Thesis; Isaac W. Eberstein, University Representative; Dan McGee, Committee Member; Xufeng Niu, Committee Member.

Identiferoai:union.ndltd.org:fsu.edu/oai:fsu.digital.flvc.org:fsu_182166
ContributorsGu, Yu (authoraut), Sinha, Debajyoti (professor directing thesis), Eberstein, Isaac W. (university representative), McGee, Dan (committee member), Niu, Xufeng (committee member), Department of Statistics (degree granting department), Florida State University (degree granting institution)
PublisherFlorida State University, Florida State University
Source SetsFlorida State University
LanguageEnglish, English
Detected LanguageEnglish
TypeText, text
Format1 online resource, computer, application/pdf
RightsThis Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s). The copyright in theses and dissertations completed at Florida State University is held by the students who author them.

Page generated in 0.0065 seconds