Return to search

Stochastic abstraction of programs : towards performance-driven development

Distributed computer systems are becoming increasingly prevalent, thanks to modern technology, and this leads to significant challenges for the software developers of these systems. In particular, in order to provide a certain service level agreement with users, the performance characteristics of the system are critical. However, developers today typically consider performance only in the later stages of development, when it may be too late to make major changes to the design. In this thesis, we propose a performance driven approach to development — based around tool support that allows developers to use performance modelling techniques, while still working at the level of program code. There are two central themes to the thesis. The first is to automatically relate performance models to program code. We define the Simple Imperative Remote Invocation Language (SIRIL), and provide a probabilistic semantics that interprets a program as a Markov chain. To make such an interpretation both computable and efficient, we develop an abstract interpretation of the semantics, from which we can derive a Performance Evaluation Process Algebra (PEPA) model of the system. This is based around abstracting the domain of variables to truncated multivariate normal measures. The second theme of the thesis is to analyse large performance models by means of compositional abstraction. We use two abstraction techniques based on aggregation of states — abstract Markov chains, and stochastic bounds — and apply both of them compositionally to PEPA models. This allows us to model check properties in the three-valued Continuous Stochastic Logic (CSL), on abstracted models. We have implemented an extension to the Eclipse plug-in for PEPA, which provides a graphical interface for specifying which states in the model to aggregate, and for performing the model checking.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:563069
Date January 2010
CreatorsSmith, Michael James Andrew
ContributorsHillston, Jane. : Stark, Ian
PublisherUniversity of Edinburgh
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://hdl.handle.net/1842/4778

Page generated in 0.0017 seconds