Return to search

Prediction of homing pigeon flight paths using Gaussian processes

Studies of avian navigation are making increasing use of miniature Global Positioning Satellite devices, to regularly record the position of birds in flight with high spatial and temporal resolution. I suggest a novel approach to analysing the data sets pro- duced in these experiments, focussing on studies of the domesticated homing pigeon (Columba Livia) in the local, familiar area. Using Gaussian processes and Bayesian inference as a mathematical foundation I develop and apply a statistical model to make quantitative predictions of homing pigeon flight paths. Using this model I show that pigeons, when released repeatedly from the same site, learn and follow a habitual route back to their home loft. The model reveals the rate of route learning and provides a quantitative estimate of the habitual route complete with associated spatio-temporal covariance. Furthermore I show that this habitual route is best described by a sequence of isolated waypoints rather than as a continuous path, and that these waypoints are preferentially found in certain terrain types, being especially rare within urban and forested environments. As a corollary I demonstrate an extension of the flight path model to simulate ex- periments where pigeons are released in pairs, and show that this can account for observed large scale patterns in such experiments based only on the individual birds’ previous behaviour in solo flights, making a successful quantitative prediction of the critical value associated with a non-linear behavioural transition.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:543029
Date January 2010
CreatorsMann, Richard Philip
ContributorsRoberts, Stephen : Guilford, Tim
PublisherUniversity of Oxford
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://ora.ox.ac.uk/objects/uuid:bf6c3fb5-5208-4dfe-aa0a-6e6da45c0d87

Page generated in 0.002 seconds