Over the last decade, Graphics Processing Units (GPUs) have been used extensively in gaming consoles, mobile phones, workstations and data centers, as they have exhibited immense performance improvement over CPUs, in graphics intensive applications. Due to their highly parallel architecture, general purpose GPUs (GPGPUs) have gained the foreground in applications where large data blocks can be processed in parallel. However, the performance improvement is constrained by a large power consumption. Likewise, Near Threshold Computing (NTC) has emerged as an energy-efficient design paradigm. Hence, operating GPUs at NTC seems like a plausible solution to counteract the high energy consumption. This work investigates the challenges associated with NTC operation of GPUs and proposes a low-power GPU design, Split Latency Allocator, to sustain the performance of GPGPU applications.
Identifer | oai:union.ndltd.org:UTAHS/oai:digitalcommons.usu.edu:etd-8263 |
Date | 01 August 2018 |
Creators | Pal, Asmita |
Publisher | DigitalCommons@USU |
Source Sets | Utah State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | All Graduate Theses and Dissertations |
Rights | Copyright for this work is held by the author. Transmission or reproduction of materials protected by copyright beyond that allowed by fair use requires the written permission of the copyright owners. Works not in the public domain cannot be commercially exploited without permission of the copyright owner. Responsibility for any use rests exclusively with the user. For more information contact digitalcommons@usu.edu. |
Page generated in 0.0018 seconds