Return to search

Contrôle optimal de modèles de neurones déterministes et stochastiques, en dimension finie et infinie. Application au contrôle de la dynamique neuronale par l'Optogénétique / Optimal control of deterministic and stochastic neuron models, in finite and infinite dimension. Application to the control of neuronal dynamics via Optogenetics

Let but de cette thèse est de proposer différents modèles mathématiques de neurones pour l'Optogénétique et d'étudier leur contrôle optimal. Nous définissons d'abord une version contrôlée des modèles déterministes de dimension finie, dits à conductances. Nous étudions un problème de temps minimal pour un système affine mono-entrée dont nous étudions les singulières. Nous appliquons une méthode numérique directe pour observer les trajectoires et contrôles optimaux. Le contrôle optogénétique apparaît comme une nouvelle façon de juger de la capacité des modèles à conductances de reproduire les caractéristiques de la dynamique du potentiel de membrane, observées expérimentalement. Nous définissons ensuite un modèle stochastique en dimension infinie pour prendre en compte le caractère aléatoire des mécanismes des canaux ioniques et la propagation des potentiels d'action. Il s'agit d'un processus de Markov déterministe par morceaux (PDMP) contrôlé, à valeurs dans un espace de Hilbert. Nous définissons une large classe de PDMPs contrôlés en dimension infinie et prouvons le caractère fortement Markovien de ces processus. Nous traitons un problème de contrôle optimal à horizon de temps fini. Nous étudions le processus de décision Markovien (MDP) inclus dans le PDMP et montrons l'équivalence des deux problèmes. Nous donnons des conditions suffisantes pour l'existence de contrôles optimaux pour le MDP, et donc le PDMP. Nous discutons des variantes pour le modèle d'Optogénétique stochastique en dimension infinie. Enfin, nous étudions l'extension du modèle à un espace de Banach réflexif, puis, dans un cas particulier, à un espace de Banach non réflexif. / The aim of this thesis is to propose different mathematical neuron models that take into account Optogenetics, and study their optimal control. We first define a controlled version of finite-dimensional, deterministic, conductance based neuron models. We study a minimal time problem for a single-input affine control system and we study its singular extremals. We implement a direct method to observe the optimal trajectories and controls. The optogenetic control appears as a new way to assess the capability of conductance-based models to reproduce the characteristics of the membrane potential dynamics experimentally observed. We then define an infinite-dimensional stochastic model to take into account the stochastic nature of the ion channel mechanisms and the action potential propagation along the axon. It is a controlled piecewise deterministic Markov process (PDMP), taking values in an Hilbert space. We define a large class of infinite-dimensional controlled PDMPs and we prove that these processes are strongly Markovian. We address a finite time optimal control problem. We study the Markov decision process (MDP) embedded in the PDMP. We show the equivalence of the two control problems. We give sufficient conditions for the existence of an optimal control for the MDP, and thus, for the initial PDMP as well. The theoretical framework is large enough to consider several modifications of the infinite-dimensional stochastic optogenetic model. Finally, we study the extension of the model to a reflexive Banach space, and then, on a particular case, to a nonreflexive Banach space.

Identiferoai:union.ndltd.org:theses.fr/2016PA066471
Date20 September 2016
CreatorsRenault, Vincent
ContributorsParis 6, Thieullen, Michèle, Trélat, Emmanuel
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0018 seconds