Individual carbon nanotubes (CNTs) possess excellent piezoresistive performance, which is manifested by the significant electrical resistance change when subject to mechanical deformation. In comparison to individual CNTs, the CNT thin films, formed by a random assembly of individual tubes or bundles, show much lower piezoresistive sensitivity. Given the progress made to date in developing CNT ensemble based-piezoresistive sensors, the related piezoresistive mechanism(s) are still not well understood. The crucial step to obtain a better understanding of this issue is to study the effects of CNT structure in the dispersion on the piezoresistivity of CNT ensemble based-piezoresistive sensors. To reach this goal, my Ph.D. research first focuses on establishing the processing-structure-property relationship of SWCNT thin film piezoresistive sensors. The key accomplishment contains: 1) developing the combined preparative ultracentrifuge method (PUM) and dynamic light scattering (DLS) method to quantitatively characterized SWCNT particle size in dispersions under various sonication conditions; 2) designing combined ultrasonication and microfluidization processing protocol for high throughput and large-scale production of high quality SWCNT dispersions; 3) fabricating varied SWCNT thin film piezoresistive sensors through spray coating technique and immersion-drying post-treatment; and 4) investigating the effect of microstructures of SWCNTs on piezoresistivity of SWCNT thin film sensors. This experimental methodology for quantitative and systematic investigation of the processing-structure-property relationships provides a means for the performance optimization of CNT ensemble based piezoresistive sensors. As a start to understand the piezoresistive mechanism, the second focus of my Ph.D. research is studying charge transport behaviors in SWCNT thin films. It was found that the temperature-dependent sheet resistance of SWCNT thin films could be explained by a 3D variable range hopping (3D-VRH) model. More importantly, a strong correlation between the length of SWCNTs and the VRH parameter T0, indicating the degree of disorder of the electronic system, has been identified. With the structure dependent transport mechanism study, a very interesting topic - how T0 changes when SWCNT thin film is under a mechanical deformation, would be helpful for better understanding the piezoresistive mechanism of SWCNT thin film sensors. As demonstrated in transport mechanism study, SWCNT thin film exhibits a negative temperature coefficient (NTC) of resistance. In contrast, another family of carbon nanomaterials, graphite nanoplatelets (GNPs), shows positive temperature coefficient (PTC) of resistance, attributed to their metallic nature. Therefore, upon a wise selection of mass ratio of SWCNTs to GNPs for fabrication of hybrid SWCNT/GNP thin film piezoresistive sensors, a near zero temperature coefficients of resistance in a broad temperature range has been achieved. This unique self-temperature compensation feature along with the high sensitivity of SWCNT/GNP hybrid sensors provides them a vantage for readily and accurately measuring the strain/stress levels in different conditions. With the unique features of SWCNT/GNP hybrid thin film sensors, my future work will focus on application exploration on SWCNT/GNP thin film sensor based devices. For example, we have demonstrated that it is potential for man-machine interaction and body monitoring when coating the hybrid sensor on highly stretchable nitrile glove. The structure health monitoring (SHM) of composite materials could also be realized by coating the thin film sensor on a glass fiber surface and then embedding the fiber sensor in composite structure. / A Dissertation submitted to the Department of Industrial Engineering in partial fulfillment of the requirements for the degree of Doctor of Philosophy. / Summer Semester, 2013. / June 27, 2013. / carbon nanotubes, hybrid materials, sensors, strain gauge, structure health
monitoring, thin films / Includes bibliographical references. / Tao Liu, Professor Directing Dissertation; James Brooks, University Representative; Chuck Zhang, Committee Member; Mei Zhang, Committee Member; Sachin Shanbhag, Committee Member.
Identifer | oai:union.ndltd.org:fsu.edu/oai:fsu.digital.flvc.org:fsu_183802 |
Contributors | Luo, Sida (authoraut), Liu, Tao (professor directing dissertation), Brooks, James (university representative), Zhang, Chuck (committee member), Zhang, Mei (committee member), Shanbhag, Sachin (committee member), Department of Industrial and Manufacturing Engineering (degree granting department), Florida State University (degree granting institution) |
Publisher | Florida State University, Florida State University |
Source Sets | Florida State University |
Language | English, English |
Detected Language | English |
Type | Text, text |
Format | 1 online resource, computer, application/pdf |
Rights | This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s). The copyright in theses and dissertations completed at Florida State University is held by the students who author them. |
Page generated in 0.0165 seconds